Machine Learning Supervisé
avec R

Florian Pothin
Classe : IAS-M2-DA-2
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Calcul des weights of evidence (WoE) II

» On acréé un data frame contenant les WoE des variables explicatives initiales

> head (credit_woe)

Comptes Duree_credit Historique_credit Objet_credit Montant_credit

1-0.8180987  0.4988765 0.73374058  0.1643031 0.2058521 0.7621401

2 -0.4013918  -0.9162907 -0.08786876  0.1643031  -0.5524983 -0.2524534

3 1.1762632  0.4988765 0.73374058  -0.3109932 0.2058521 -0.2524534

4 -0.8180987  -0.9162007 -0.08786876  0.1643031  -0.5524983 -0.2524534

5 -0.8180987  -0.2035434 -0.08786876  -0.3592005  -0.5524983 -0.2524534

6 1.1762632  -0.2035434 -0.08786876  -0.3109932  -0.5524983 0.7621401
Taux_effort Situation familiale Garanties Anciennete_domicile Biens age

1 -0.15730029 0.1616414 -0.02797385 -0.001152738 0.46103496 0.1391971

2 0.15546647 ~0.2353408 ~0.02797385 ~0.070150705 0.46103496 -0.5288441

3 0.15546647 0.1616414 -0.02797385 0.054941118  0.46103496 0.1391971

1 0.15516647 0.1616414 0.58778666 -0.001152738 -0.03188189 0.1391971

5 0.06453852 0.1616414 -0.02797385 ~0.001152738 -0.58608236 0.1391971

6 0.15516647 0.1616414 -0.02797385 -0.001152738 -0.58608236 0.1391971
Statut_domicile Nb_credits Type_emploi Nb_pers charge Telephone Cible

1 0.1841560 0.1157105 0.02278003  -0.00281611 0.09863759 0O

2 0.1941560 -0.0748775 0.02278003  -0.00281611 -0.06469132 1

3 0.1841560 -0.0748775 0.09716375  0.01540863 -0.06469132 0

1 -0.4302047 -0.0748775 0.02278003 0.01540863 -0.06469132 0

5 -0.4302047 0.1157105 0.02278003  0.01540863 -0.06469132 1

6 -0.4302047 -0.0748775 0.09716375  0.01540863 0.09863759 0

»  On crée un échantillon d’apprentissage et un de validation

> train

> valid
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<~ credit_woe(id,]

<- credit_woe(-id,]
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Epargne Anciennete_emploi

0.29871667
-0.03210325
0.29871667
0.29871667
-0.03210325
-0.03210325
Autres_credits
0.1211786
0.1211786
0.1211786
0.1211786
0.1211786
0.1211786
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Modeéle logit sur WoE I

»  On ajuste un modéle logit, qun est pIus simple, avec un seul degré de liberté par variable

> logit < _credits, data<train, family-binomial(link = "logit™))

> summazy (logit)
cant

gln(fornula = Clble ~ Conptes + Hlstorlque_credit + Duree_credlt +

Bge + Epargne + Garanties + Autres_credits, family = binomial(link = "logit™),

data = train)

Deviance Residuals:
sin 10 Median 3 max
19421 -0.7566 -0.4523  0.8537  2.6282

costricients:

Estimate Std. Error z value Pr(>|z))

(ntercept) 0.8672 0.1009 -2.595 < 2a-16 +v
conptes 08984 0,125 -6.937 4.010-12 *r+
Historiquecredit -0.8131  0.1822 ~4.162 5.11e-06 *
Duree_credit 0.9974  0.2225 -4.492 7.380-06 *
hge co.6552  0.3434 -1.308 0.05640 .
Epazane 10354 0.2051 -4.224 2.400-05 *++
Garanties 2.0730  0.7990 -2.595 0.00947 *+
Autres_credits  -0.8773  0.4038 -2.172 0.02083 *

Stgnie. codes

0.001

Null deviance: 814.01 on 665 degress of freedom

Res

wal deviance: §39.04 on 658 dsgress of frasdom

arc: 655,00

Number of Fisher Scoring Lterations: §
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Modéle logit sur WoE II

» Ce nouveau modéle a une aire sous la courbe ROC plus élevée : 0,7596 >
,
> pred.logit <- predict (logit, newdata=valid, type="response")
> auc(valid$Cible, pred.logit, quiet=TRUE)
Area under the curve: 0.7657
» Le nombre de coefficients non significatifs au seuil de 5 % est passé de 3 a |
c’est I'age dont la p-value = 5,64 %
> sum(summary (logit) $coefficients([,4] >= 0.05)

11 1
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Modeéle logit sur WoE III

» La simplification du modeéle peut permettre de prendre en compte des variables q#uzblitatives

discriminantes dont certaines modalités ont des coefficients non significativement

c’est le cas de I'objet de crédit dont la modalité « Intérieur » a une p-value = 96,6 %

> logit <-

glm(Cible~Comptes+Historique_credit+Duree_credit+Age+Epargne+Garanties+Autres_credits+Objet_credit,

0.64957
0.23478
0.47385
0.27164

data=train, family=binomial(link = "logit"))
> summary (logit)
Coefficients:
Estimate Std. Error
(Intercept) -0.68304
ComptesCC < 0 euros 0.16917
ComptesCC > 200 euros -1.36324
ComptesPas de compte -1.46689
Historique creditCrédits passés sans retard -1.59679

Historique_creditPas de crédits ou en cours sans retard -0.90195

Duree_credit (15, 36]
Duree_credit (36, Inf|

Age (25, Inf]

EpargnePas épargne ou > 500 euros
Garantiessans garant
Autres_creditsCrédits extérieurs
Objet_creditIntérieur
Objet_creditVoiture neuve

Objet_creditvVoiture occasion
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0.68982
1.75035
-0.51624
-1.12051
1.34003
0.57559
-0.01234
0.49118
-0.86957

0.37329
0.33336
0.21622
0.37671
0.23857
0.25616
0.49197
0.24826
0.28661
0.31725
0.43685
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z value
-1.052
0.721
-2.877
-5.400
-4.278
-2.706
3.190
4.646
-2.164
-4.374
2.724
2.318
-0.043
1.548
-1.991

pr(>|z|
0.29302
0.47119
0.00402
6.66e-08
1.89-05
0.00682
0.00142
3.38e-06
0.03047
1.22e-05
0.00645
0.02042
0.96566
0.12157
0.04653
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Modeéle logit sur WoE IV

» Avec les WOoE, c;_p a pu aioqteFAI‘obiet du crédit au modéle, dont tous les coefficients sont
significativement # 0 (y compris I'dge)
> logit < glm(cy o . .
Gatactrain, family=binomial(link - "Logit"))

_credif p: ies+Autres_credits+Objet_credit,

> summary (Logit)

Coefficients:
Estimate Std. Error z value Px(>|z|)

(Intercept) -0.8646  0.1018 -B.433 < 2e-16 *+*
Comptes -0.8792  0.1306 -6.734 1.65e-11 *+*
Historique_credit -0.7876  0.1840 -4.280 1.87e-05 *++
Duree_credit S1.0797  0.2279 -4.738 2.16e-06 *+*
age -0.7849  0.3508 -2.240 0.02508 *
Epargne -1.0257  0.2467 -4.157 3.23e-05 *++
Garanties -1.9931  0.8010 -2.488 0.01284 *
Autres_credits  -0.8231  0.4061 -2.027 0.04271 *
Objet_credit -0.8988  0.2963 -3.013 0.00258 **

Signif. codes: 0 ‘+*+/ 0.001 '**/ 0.01 “*' 0.05 “.’ 0.1 '’ 1

Null deviance: 814.01 on 665 degrees of freedom

Residual deviance: 629.63 on 657 degrees of freedom

AIC: 647.63

> pred.logit <- predict (Logit, newdata=valid, type="response")
> auc(validsCible, pred.logit, quiets=
Area under the curve: 0.7801

RUE) # Area under the curve: 0.7657

»  On atteint une AUC = 0,780 plus élevée que celle des modéles précédents
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Fonction de densité du score

Fonctions de densité du score sur les bons et mauvais dossiers

»
> plot (density (pred.logit [valid$Cible==0]), main="Fonction de densité du score",
col="blue", xlim = c(-0.2,1.1), ylim = c(0,3),1lwd=2)
> lines(density (pred.logit [valid$Cible==1]), col="red", lty=3, lwd=2)
> legend("topright",c("Cible=0", "Cible=1"), 1lty=c(1,3), col=c("blue","red"), lwd=2)

» A gauche : modeéle sur variables initiales — & droite : modéle sur WoE

Fonction de densité du score Fonction de densité du score

02 00 02 04 08 08 10 02 00 0z o4 08 08 10

N-234 Bandwidth-0.058 N=234 Bandvidth = 005792
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Seuils de score I

»  On peut découper la note de score en tranches

»  On constitue généralement deux ou trois tranches de score :

une tranche moins risquée, dans laquelle il suffic d'effectuer quelques vérifications indispensables (dans les fichiers de la
Banque de France par exemple) et de demander au client les piéces minimales obligatoires

une tranche intermédiaire, dans laquelle il faut examiner attentivement le dossier et effectuer une analyse standard de risque

une tranche plus risquée, dans laquelle la demande est, sinon rejetée, du moins transmise & I'échelon hiérarchique supérieur

pour un examen approfondi du dossier

»  Nous appliquons le modeéle a I'ensemble des données, nous découpons la note de score en vingtiles
(tranches de 5 %), puis nous calculons et affichons les taux d'impayés pour chacun de ces vingtiles

> pred.logit <- predict (logit, newdata=credit?, type="response")
> q <= quantile(pred.logit, seq(0, 1, by=0.05))

> gscore < cut (pred.logit, @)

> tab <- table(gscore, credit2sCible)

> ti < prop.table (tab,1)[,2]

> old <- par(no.readonly = TRUE)

> par (mar

> barplot (as.numeric(ti), col=gray (0: length(ti) /length(ti)),

+ names.arg=names (t1), ylab='Taux impayés', ylim=c(0,1),cex.nanes = 0.8,

> abline (vec(7.3,19.3), col="red")

> par (ola)
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L las=3)

Taux impayés
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Seuils de score 11

» Nous pouvons discerner deux seuils assez naturels a 0,1 | et 0,527, que nous
utilisons comme limites des tranches du score, et nous obtenons :
une tranche a faible risque, qui regroupe 29,6 % des dossiers et a un taux d’impayés de 6 %
une tranche a risque moyen, qui regroupe 50,2 % des dossiers et a un taux d’impayés de 29 %
une tranche a fort risque, qui regroupe 20,2 % des dossiers et a un taux d'impayés de 67 %
Nous voyons que le score est trés discriminant, puisque le taux d’impayés de

la tranche a fort risque est | | fois plus élevé que celui de la tranche a faible
risque

v

v

zscore <- recode (pred.logit, "lo:0.11l='Faible'; 0.11:0.527='Moyen';
.527:hi="Fort'")

o

v

tab <- table(zscore,credit2$Cible)

> cbind(prop.table(tab,1), addmargins(tab,2))
0 1 0 1 sum

Faible 0.9391892 0.06081081 278 18 296

Fort 0.3316832 0.66831683 67 135 202

Moyen 0.7071713 0.29282869 355 147 502
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Grille de score

»  On peut transformer un modéle logistique en une grille de score avec pour chaque
modalité un nombre de points > 0
d’autant plus élevé que la modalité correspond a un profil plus risqué
et normalisé pour que chaque dossier ait un nombre total de points compris entre 0 et 100
» La transcription d’'un modele sous forme de « grille de score » est courante en credit scoring
»  On parle de scorecard

» Avec des variables qualitatives ou discrétisées, et un coefficient par modalité, il suffit de :

e
comme valeur du score

. o L logit

substituer le logit a la probabilité Treloatt
puis normaliser le logit en sorte qu'il soit compris entre 0 et 100 (ou 1000 pour limiter I'effet des
arrondis)

» Dans cette normalisation du logit, les coefficients de la régression logistique sont remplacés

par de nouveaux coefficients, appelés « nombres de points », associés chacun a une modalité

» Le nombre de points est parfaitement corrélé au score logistique en termes de rangs

(corrélation de Spearman = 1) et son pouvoir discriminant est exactement le méme,
o
1+eX

puisque le classement des individus est conservé par la fonction croissante

» Donc laire sous la courbe ROC de la grille de score est égale a celle du score logistique
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Calcul de la grille de score

> Pour chaque variable qualitative ou discréte X;, on note ¢; le coefficient du modeéle
associé a la k¢ modalité, et g, et b) ses coefficients minimum et maximum dans la
régression logistique :

@ = mincj et by = max cji

» On calcule ensuite le poids total sur I'ensemble des variables : pt = Zj(bj - a]-)
—q;
pt

» A chaque modalité k de X; est associé un nombre de points égal a : 100 X 2

En présence de variables X, quantitatives, la grille est plus complexe a établir : le poids
total doit prendre en compte le coefficient f3;, le minimum m,; et le maximum M; de
chaque variable X, :

pt = 3;(bj — @) + 1Bl (M, —my)

A i X=m,
A une valeur x correspond alors un nombre de points : 100 X 1BulGe=my)

La complexité vient de ce que le nombre de points n’est alors pas directement donné
mais doit étre calculé pour chaque valeur x
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Calcul de la grille de score avec R I

» Lafonction glm ne fournit pas directement un data frame contenant une colonne pour les
variables (facteurs), une pour leurs modalités (niveaux) et une pour leurs coefficients = nous
devons le créer

» La composante x1levels de I'objet résultat est une liste contenant ses niveaux pour chaque
facteur du modele

> logit$xlevels

$Comptes

[1] "CC [0-200 euros[" "CC < 0 euros" "CC > 200 euros"  "Pas de compte"
$Historique_credit

[1] "Crédits en impayé" "Crédits passés sans retard"
"Pas de crédits ou en cours sans retard"

$Duree_credit

[1] "(0,15]" "(15,36]" "(36,Inf]"

$Age

[1] "(0,25]" " (25,Inf]"

SEpargne

[1] "< 500 euros” "Pas épargne ou > 500 euros"
SGaranties

[1] "Avec garant" "Sans garant"
$Autres_credits

[1] "Aucun crédit extérieur" "Crédits extérieurs"
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Calcul de la grille de score avec R II

Avec unlist (logit$xlevels),on concaténe dans un vecteur les différents objets de la

»
liste, les facteurs, dont avec names (unlist (logit$xlevels)) on ne conserve que les
noms
> names (unlist (logit$xlevels))
[1] "Comptesl™ "Comptes2" "Comptes3"
[4] "Comptes4™ "Historique_creditl" "Historique_credit2"
[7] "Historique_credit3" "Duree_creditl” "Duree_credit2"
[10] "Duree_credit3" "Age2"
[13] "Epargnel” "Garantiesl"
[16] "Garanties2" "Autres_creditsl" "Autres_credits2"

»  On supprime ensuite avec gsub les chiffres suffixant les noms de variables

> VARIABLE=c ("", gsub("[0-9]", "", names (unlist (logit$xlevels))))

> VARIABLE
[ESIRA "Comptes" "Comptes" "Comptes"” "Comptes"

[6] "Historique_credit" "Historique_credit" "Historique_credit"” "Duree_credit” "Duree_credit”
[11] "Duree_credit" "Age" "Age" "Epargne"” "Epargne”

[16] "Garanties" "Garanties" "Autres_credits" "Autres_credits"

» Extraction des modalités
> MODALITE=c ("",unlist (logit$xlevels))

> MODALITE
Comptesl Comptes2

™ "CC [0-200 euros[" "CC < 0 euros™

Comptes3 Comptesd Historique_creditl

Florian Pothin Machine Learning supervisé avec R Page 14/106



Calcul de la grille de score avec R III

»  On concaténe ensuite variables et modalités dans une expression NOMVAR

> names = data.frame (VARIABLE, MODALITE, NOMVAR=c (" (Intercept)
paste (VARIABLE, MODALITE, sep="") [-1]))

»  On récupére ensuite les coefficients du modéle dans un data frame regression que I'on va
fusionner avec le précédent, pour avoir pour chaque coefficient la variable et la modalité qui lui

correspondent

a noter que la fonction as . numeric ne récupére que les valeurs numériques

(regression=data.frame (NOMVAR=names (coefficients (logit)),
COEF=as.numeric (coefficients (logit))))

NOMVAR
1 (Intercept) -0.
2 ComptesCC < 0 euros 0.
3 ComptesCC > 200 euros -1.
4 ComptesPas de compte —1.
5 Historique_creditCrédits passés sans retard -1.
6 Historique_creditPas de crédits ou en cours sans retard -0.
7 Duree_credit (15,36] 0.
8 Duree_credit (36, Inf] 1.
9 Age (25, Inf] -0.
10 EpargnePas épargne ou > 500 euros -1.
11 GarantiesSans garant 1.
12 Autres_creditsCrédits extérieurs 0.
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COEF
5797981
1584002
3485320
5136834
5873249
8970474
5766696
5115586
4507556
0999919
3194937
5587985
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Calcul de la grille de score avec R IV

» La fusion des deux data frames se fait sur
la colonne qu’elles ont en commun :
NOMVAR

pour un autre choix, il faudrait spécifier la
clé par un by

»  On élimine NOMVAR du résultat par [-1]
(NOMVAR est la premiére colonne) et
on remplace les valeurs manquantes dans
les coefficients (ceux des modalités de
référence) par 0

» Comme ces coefficients des modalités de
référence n'apparaissent pas dans le data
frame regression, il faut spécifier 'option
all.x=TRUE pour que les lignes
correspondantes soient ajoutées lors du
merge (elles sont présentes dans le data
frame names)

Machine Learning supervisé avec R

| regrassion, all.x-TRuE) (-1]

ER)1 < 0

1 ~0.5797981
2 age (0,251 0.0000000
Age (25,1n¢) -0.2507556

hucun crédit extérieur

Crédits extérieurs 0

ce (0-200 euros(  0.0000000

comptes = 0.1584002
B comptes
10 Durse_credit
n Duree_credic. 5,36 05766695

it (36,1081 1.5115586
13 Epargne < 500 suros 0.0000000

m sparane Pas épargne ou > 500 euros -1.0999919

Avec garant 00000000

Garancies Sans garant 1.3194337

orique_credit crédits pas -1.5873249
15 wistorique_credic Pas de crédits ou en cours sans 0.8970474
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Calcul de la grille de score avec RV

»  On crée ensuite un data frame qui contient le coefficient minimum de chaque variable, un autre
qui contient le coefficient maximum, puis on les fusionne
> mini=aggregste (data. frame (min = paramCOEE), by = list (VARIABLE = parsmSVARTABLE), min)
> maxi=aggregste (data. frame (rax = paranCOEE), by = list (VARIABLE = parsmSVARTABLE), max)

> total = merge (mini,maxi)

> totalsdiff = totalsmax - totalsmin

> total

vaRIABLE min max aiee
1 -0.5797381 -0.5797981 0.0000000
2 Age -0.4507556 0.0000000 0.4507556

s_credits 0.0000000 0.5587985 0.5587985

s Comptes ~1.5136634 0.1584002 1.6720836
s Duree_credit 0.0000000 1.5115585 1.5115586
6 Epargne ~1.0999915 0.0000000 1.0999919
7 Garanties 0.0000000 1.3194937 1.3194937

8 Historique_credit -1.5873249 0.0000000 1.5873243

»  Puis on calcule le poids total qui servira a normaliser le poids de chaque modalité
> poids_total = sum(totalsdiz)
> poids_total

(1) 8.200007

Florian Pothin Machine Learning supervisé avec R Page 17/106



Calcul de la grille de score avec R VI

»  On fusionne ensuite sur la colonne VARIABLE le data frame param avec le data frame mini pour
ajouter en face de chaque modalité le coefficient minimum de la variable de cette modalité
»  On calcule la différence entre le coefficient de chaque modalité et le coefficient minimum de la
variable, puis le poids de la modalité
> grille = merge (param, mini, all.x=TRUE)
> grille$delta = grille$COEF - grille$min
> grille$POTDS = round((100*grillesdelta) / poids_total)

»  On affiche enfin la grille, aprés suppression de la ligne sans nom de variable, qui correspond a la

constante
> grillelorder (grilleSVARTABLE, grilleSHODALITE) [which (VARTABLE!="")], c("VARIABLE", "MODALITE", "POIDS")]
VARIABLE MODALITE POIDS
2 age s
3 Age o
4 hutres credits o
5 Autres credits 7
6 Comptes 18
7 Compes 20
s comptes 2
B Comptes o
10 Duree_credit o
1 Duree_credit 7
12 Duree_credit 18
13 Epargne 13
1a Epargne Pas épargne ou > o
15 Garanties Avec garant 0
16 Garanties sans garant 16
17 Historique_credit credits en impays 19
18 Historique_credit créadis p sans retard 0
19 Historique_credit Pas de crédits ou en cours sans retard &
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Application de la grille de score I

» On transforme la grille de score en une chaine de caractéres que la fonction
parse transforme en une ligne de code R, que la fonction eval évalue,
calculant ainsi le nombre de points de chaque dossier

> card <- function(base,i){

+ noquote (paste0 (" ((",base, "$",grille[i, "VARIABLE"],"=="'",grille(i, "MODALITE"],"') *",grille[i, "POIDS"],") "))
+ )

> card("credit2",2)

[1] ((credit2$Age=='(0,25]")*5)

> scorecard <- rbind(sapply(2:nrow(grille),

function (x) card("credit2",x)))
> scorecard <- noquote (paste (scorecard, collapse = '+'))

> scorecard

[1] ((credit2$Age=='(0,25]")*5)+((credit2$Age=="(25, Inf]') *0)+((credit25Autres_credits=='Aucun crédit
extérieur')*0)+ ((credit2$Autres_credits=='Crédits extérieurs')*7)+

> pred.grille <- eval (parse (text=scorecard))

v

On vérifie que I'on obtient des nombres de points, quasiment parfaitement
corrélés a la note du score logit, la liaison étant donnée par une fonction en S

> head (pred.grille, 10)

[1] 36 78 29 59 64 31 31 62 24 54

> cor(pred.grille, pred.logit,method="spearman")
[1] 0.9995231

> plot (pred.grille,pred.logit)
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Application de la grille de score II

» On peut déterminer des tranches du nombre de points, comme pour la note
de score, et les seuils précédents de 0, | et 0,527 de la note de score
correspondent ici aux seuils de 37 et 63 points

plot (pred.grille,pred.logit)

q <- quantile(pred.grille, seqg(0, 1, by=0.05))

gscore <- cut(pred.grille, q)

tab <- table(gscore, credit2$Cible)

ti <- prop.table(tab,1) [,2] # affichage % en ligne

old <- par(no.readonly = TRUE)

par (mar = c(7, 4, 2, 0))

barplot (as.numeric(ti), col=gray(0:length(ti)/length(ti)),

names.arg=names (ti), ylab='Taux impayés', ylim=c(0,1), cex.names = 0.8, las=3)

abline(v=c(7.3,19.3),col="red") o
par (o1d) :
zscore <- recode (pred.grille, "lo:37='Faible'; 37:63='Moyen'; 63:hi='Fort|")
tab <- table(zscore, credit25Cible) :

VYV VYV EV VYUYV YVY Y

cbind (prop.table (tab,1), addmargins(tab,2)) B}
o Lo 1 sem 1

Faible 0.9391892 0.06081081 278 18 296 H

Fort  0.3316832 0.66831683 67 135 202

Moyen 0.7071713 0.29282869 355 147 502
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Sélection pas a pas I

Le package stats contient une fonction step qui réalise la sélection pas a pas des variables en cherchant a

minimiser un critére pénalisé du type AIC ou BIC

La fonction step est associée a la fonction glm et peut donc étre utilisée pour n'importe quel modéle linéaire

généralisé, comme par exemple un modéle de régression linéaire ou de régression logistique

»  Lafonction step peut étre utilisée pour la sélecti d rward), di d backward), ou
stepwise (both) (sélection ascendante avec suppression possible d une variable déja entrée dans le modéle)

»  Pour une sélection pas a pas ascendante, nous partons du modéle minimal

> logit <- glm(Cible~1, data=train, family=binomial(link = "logit"))
> summary (Logit)

call:

glm(formula = Cible ~ 1, family = binomial(link = "logit"), data = train)

Deviance Residuals:
Min 10 Median 30 Max
-0.8451 -0.8451 -0.8451  1.5511  1.5511

Coefficients:
Estimate Std. Error z value Pr(>|z)
(Intercept) -0.84587 0.08453 -10.01 <2e-16 ***

Signif. codes: 0 ‘**%/ 0.001 “#*/ 0.01 “#/ 0.05 *.7 0.1 * /1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 814.01 on 665 degrees of freedom

Residual deviance: 814.01 on 665 degrees of freedom
AIC: 816.01
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Sélection pas a pas II

» Lafonction step permet de spécifier le modeéle initial, la direction ascendante de la sélection, I'affichage
(trace) des étapes de la sélection, la plage (scope) de modéles examinée, et le multiple k du nombre d de
degrés de liberté dans la pénalisation ajoutée a la déviance —2 log(vraisemblance)

»  Cette pénalisation vaut 2.d pour le critére d’Akaiké (AIC) et log(effectif).d pour le critére de Schwartz (BIC), et
on peut spécifier k = 2 ou k = log(nombre de lignes du data frame), ou encore d’autres valeurs

» lci on a choisi le BIC (mais dans ses sorties la fonction step écrit AIC dans tous les cas)

> predicteurs <- -grep (' (Cle|Cible)', names(train))

> formule <- as.formula(paste("y ~ ", paste(names(train[,predicteurs]), collapse="+")))

> formule

y ~ Comptes + Duree_credit + Historique_credit + Objet_credit +
Montant_credit + Epargne + Anciennete_emploi + Taux_effort +
Situation_familiale + Garant + A te_domicile + Biens +
Age + Autres_credits + Statut_domicile + Nb_credits + Type_emploi +
Nb_pers_charge + Telephone

»  On teste les modéles compris entre le modeéle initial (= constante) et le modéle contenant tous les prédicteurs

»  Le BIC du modéle réduit a la constante vaut 820,51, et introduire la variable « Comptes » dans le modeéle fait
baisser le BIC a 743,90

> selection <- ste Logity direction
scope=list (upper= Bimeier

forward", trace=TRUE, k = log(nrow(train)),

Start: AIC=820.51
cible ~ 1

Df Deviance  AIC
+ Comptes 3 717.90 743.90

+ Historique_credit 2  769.66 789.16

+ Taux_effort 3 812.35 838.36
+ Type_emploi 3 812.88 838.88
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Sélection pas a pas IlI

»  Le BIC du modele contenant la constante et la variable « comptes » vaut 743,90 et c’est ensuite I'historique de

crédit qui fait le plus baisser le BIC,a 728,98

»  Les lignes au-dessus de <none> corr

du modéle atteint a cette étape, et donc détre intégrées au modéle

aux variables

de procurer un BIC inférieur a celui

»  Quant a la déviance = 717,90 elle ne peut bien sir que baisser a chaque ajout d’une variable dans le modéle

Step: AIC=743.9
Cible ~ Comptes

+ Historique_credit
+ Duree_credit

+ Epargne

+ Montant_credit

+ Autres_credits
<none>

+ Garanties

+ Biens

+ Age

+ statut_domicile

+ Nb_pers_charge

+ Situation familiale
+ Telephone

+ Anciennete_emploi

+ Objet_credit

+ Anciennete_domicile
+ Nb_credits

+ Taux_effort

+ Type_emploi

Florian Pothin

Df Deviance

2

2
1
1
1

WL LW LN R e e

689.97
694.31
701.77
705.04
710.36
717.90
711.41
707.53
715.54
715.76
716.54
710.66
717.89
711.56
708.80
708.82
713.65
714.41
717.49
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728.98
733.31
734.28
737.55
742.86
743.90
743.92
746.53
748.04
748.27
749.04
749.66
750.40
750.56
754.31
754.33
759.16
759.92
763.00
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Sélection pas a pas IV

» On s’arréte quand le BIC ne diminue

» Quand le modéle contient déja les variables « comptes », « historique de crédit », « épargne » et
« durée de crédit », le BIC vaut 710,7

»  On voit que la variable « Garanties » peut faire baisser le BIC a 709,80 mais que I'ajout d’'une
variable supplémentaire (« autres crédits ») fait remonter le BIC 2 713,15

Step: AIC=710.7

Cible ~ Comptes + Historique_credit + Epargne + Duree_credit

.

Garanties

.

.

Autres_credits
hge

Montant_credit
Situation_familiale
Nb_pers_charge
Statut_domicile
Telephone
Anciennete_emploi
Objet_credit.

Biens
Anciennete_domicile
Taux_effort
Nb_credits

Type_emploi
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Df Deviance

1

644.
652.
645,
648,
650.
644.
651.
651.

652.
647,
.20
649.
643.
6as.
649,

641

652.

79
19
1
B
93
4
1
9
o
55

it
53
36
o

15

709.80
710.70
713.15
713.96
715.94
715.99
716.13
716.91
717.03
719.06
719.21
720.62
721,50
726.38
727.09
730.16
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Sélection pas a pas V

»  On aajouté les garanties au modéle et la fonction s’arréte car il nest plus possible de diminuer le BIC

09.8

<none> 614,79

Autres credits 639.87
641.30
643.59

637.17

641.24
641.43
644,72

Type_emploi

»  Le critére BIC nous a conduit a sélectionner pas a pas 5 variables

725,

»  Le critére AIC impose une pénalisation moins sévére et nous conduit a sélectionner |2 variables

»  On peut aussi procéder a une sélection descendante :
le modéle initial contient toutes les variables

on n'a pas besoin de spécifier scope=1ist (upper=formule)) puisque le modéle maximal est le modéle initial, mais
on peut spécifier un modéle minimal (option scope=1ist (Lower=~Comptes+..) pour contraindre certaines variables &

apparaitre dans le modéle

logit <- glm(Cible-., datatrain,
selection <- step(logit, direction="backward", trac

Florian Pothin

family-binonial (link = "logit"))

UE, % = log(nrow(train)))
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Test de toutes les combinaisons de variables

» R permet de tester facilement tout un ensemble de combinaisons de variables (les calculs peuvent étre trés longs )
» Ensemble des combil de variables explicatives (ici : combinaisons de | & 5 variables)

> pos <- 20 # position variable & expliquer

> combis <- unlist(sapply(1:5, function(x) apply(combn(names(train) (-posl, %), 2, paste, collapse = * + ™))
» Calcul de I'ensemble des modéles logit s'appuyant sur ces combinaisons de variables (peut étre trés long)

> lst.model <- lapply(combis, function(x) glm(as.formula(paste("Cible ~7, %)), data - train, family-binomial))
» Nombre de modéles

> length (15t model)

111 16663
» Application de la liste des modeles 4 un échantillon de validation

> lst.pred <- lapply(lst.model, function(x) {predict(x, newdata=valid)})
» Calcul de I'aire sous a courbe ROC de ces modéles

> AUC < sapply(lst.pred, function(x) (auc(validSCible,s,quict=TRUE) })

> resultats <- data.frame(conbis, AUC)

» Affichage des aires sous la courbe ROC les plus élevées et des combinaisons correspondantes

> head (resultats (order (resultats(, 2], d -1),1)

combis avc
6339 Comptes + Objet_credit + Montant_credit + Biens + Age 0.7713889
5723 Comptes + Historique_credit + Objet_credit + Montant_credit + Age 0.7713675

5725 Comptes + Historique_credit + Objet_credit + Montant_credit + Statut_domicile 0.7693376

5122 Comptes + Historique_credit + Objet_credit + Montant_credit + Biens 0.7691453
5036  Comptes + Duree_credit + Historique credit + Objet_credit + Montant_credit 0.7689103
6360 Comptes + Objet_credit + Montant_credit + Statut_domicile + Telephone 0.7685684
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Régression clusterwise
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Le clustering de modéles

»

v

v

v

Régression clusterwise : méthode de recherche simultanée des classes
et des modeéles de chaque classe

C’est un modéle des moindres carrés ordinaires dans lequel on
cherche a minimiser la somme des carrés des résidus

suivante : X1y 3K_; Le(D i — (@i + Biexi))?
ou 1, (i) est la fonction indicatrice de la ke classe
On peut y parvenir par application de I'algorithme suivant :

étape | :a partir d’une partition initiale, on estime séparément k modeéles
de régression

étape 2 : chaque observation est affectée a la classe et au modeéle
minimisant le carré du résidu

étape 3 : une fois toutes les observations reclassées, on a une nouvelle
partition et on revient a I'étape 2

Il peut arriver que I'on obtienne des classes de taille < nombre de
variables = recourir a une régression pénalisée du type ridge

Package R : flexmix
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Exemple de régression clusterwise I

set.seed(2)
x1 <~ rnorm(100) o
set.seed(3)
yl <= x1 + rnorm(100, sd=0.5) o 0 26p
set.seed(5) °
y2 <- - x1 + rnorm(100, sd=0.5) - i
x <= c(xl,x1)

y <= clyl,y2)

modele <- lm(y ~ X) >
summary (modele)

VVVVVVVVY VY

call: S e
Im(formula = y ~ x) P
Residuals:

Min 10  Median 30 Max L3
-2.81971 -0.86755 0.02945 0.94792 2.54697 2 4 o 4 2

Coefficients:

Estimate Std. Error t value Pr(>[t])
(Intercept) 0.010835 0.083549  0.130  0.897
x 0.005453  0.072350  0.075  0.940

Residual standard error: 1.181 on 198 degrees of freedom
Multiple R-squared: 2.869e-05, Adjusted R-squared: -0.005022
F-statistic: 0.00568 on 1 and 198 DF, p-value: 0.94

» Nous avons obtenu une droite de régression de pente quasiment nulle
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Exemple de régression clusterwise II

»  Nous ajustons une régression clusterwise en spécifiant I'existence de 2 classes
> library (flexmix)
> clw < flexmix(y ~ x, k=2)
> summary (clw)

call:
flexmix(formula = y ~ %, k = 2)

prior size post>0 ratio
Comp.1 0.501 101 156 0.647
Comp.2 0.499 99 159 0.623

'log Lik.' -218.5194 (df=7)
AIC: 451.0388  BIC: 474.127

»  Les deux classes détectées sont presque de méme taille

»  Nous retrouvons les pentes correspondant aux deux classes que nous avons créées : 'une proche de
+| et l'autre proche de —|
> sunmary (refit (elw))
Scomp. 1
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.010514  0.048656 -0.2161  0.6289
x 0541763 0.038669 24.3547  <2e-16 *rv

signif.

less 0 “t++7 0,001 ‘44 0.01 4 0.05 .0 0.1 1

scomp.2

Estimate Std. Error 2 value px(>|z)
(Intercept) 0.013141  0.050655 0.2595  0.7953
* 0.541999  0.040461 -23.2815  <2e-16 *++

Signif. codes: 0 “YY’ 0.001 'W* 0.01 '+ 0.05 .7 0.1 %7 1
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Lien avec la régression logistique

v

Une approche courante consiste a se placer dans le cadre des modéles de
mélanges et a rechercher I'estimateur du maximum de vraisemblance

v

Les coefficients 3 de la régression logistique s’obtiennent a partir des
fonctions de densité conditionnelles f; en maximisant la log-vraisemblance

A i .y i i
calculée sur des observations (x'y'), (x2y2), ..., (x"y") : Tt log(f (v/xY))
» Dans un modéle clusterwise, la fonction de densité conditionnelle est une
somme de plusieurs fonctions Y _; 7y fj,, ol 7 est la probabilité a priori de
la classe k, et il faut estimer les paramétres 7, et 8, en maximisant la log-
vraisemblance : Y1t log(XK_; mi f, (v'/x"))
La recherche directe des paramétres (ry, ..., Tk, S, ..., fx) Maximisant cette
fonction devient vite trés complexe, méme en présence de deux classes
seulement, car on ne sait pas a quelle classe appartient chaque individu

v

v

L'estimation de ces paramétres est toutefois rendue possible par I'algorithme
EM (expectation-maximization) de Dempster et al.
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Les arbres de décision
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Principe des arbres de décision

» Les arbres de décision sont une méthode de classification
hiérarchique descendante supervisée

v

Elle est appliquée itérativement pour scinder chaque ensemble
d’individus en deux (ou plus de deux) sous-ensembles, selon un
critére le plus lié possible a la variable a expliquer

L'ensemble initial est constitué de I'ensemble des individus

(« racine »), scindé en plusieurs sous-ensembles (« nceuds ») qui
seront chacun scindés (en « nceuds-fils »), etc.

Les noceuds terminaux sont les « feuilles » et chaque chemin entre la
racine et une feuille est un ensemble de conditions = une régle

v

v

v

Dans un arbre de régression, la moyenne de la variable a expliquer
doit étre la plus différente possible d’'un nceud a I'autre

v

Dans un arbre de classement, la probabilité d’appartenance a I'une
des classes doit étre la plus différente possible d’un nceud a l'autre
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Arbres de régression

La variable a expliquerY est continue

Les arbres de régression sont une alternative a la régression
linéaire multiple
Principe :
la variable Y doit avoir une variance plus faible dans les nceuds fils
(modalités de la variable explicative créées par la scission) que dans
le nceud pére, la baisse de variance étant la plus importante possible
<& la variable Y doit avoir une moyenne la plus distincte possible d’un
neeud fils a un autre
On teste I'hypothése nulle que la moyenne de la variable a
expliquer est la méme dans chaque nceud fils. On choisit la
variable explicative, et la scission, pour laquelle la probabilité p
associée au test de Fisher-Snedecor est minimale, et on scinde
le nceud si p est inférieure au seuil fixé permettant de rejeter
I’hypothése nulle

v v

v

v
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Arbre de régression

PNB
Noeud 0
Ce Sont Ia' Moyenne 3250,141
. Ecart type 4330,307
consommation 63
d! , % 100,0
ener Ie et Prévisions 3250,141
’ A g 1 EN‘ERC t
I'espérance de vie Valur p 310,000, F-122,385,
. . ddi , ddI2=160
qui expliquent le |
mieux Ie PNB Par‘ | 9 (19, 65; <Tanquames> > 65
habitant (OU Noeud 1 Noeud 2 Noeud 3
Moyenne 554,319 Moyenne 2407,358 Moyenne 8876,463
" ' Ecart type 479,405 Ecart type 2824,902 Ecart type 4388,009
linverse !) . % . % . o
% 42,3 % 32,5 % E
Prévisions 554,319 Prévisions 2407,358 Prévisions 8876,463
[

ESPER
Valeur p 2j.=0,000, F=29,878,
ddi

Noeud 4 Noeud 5
Moyenne 322,513 | | Moyenne 855,667
Ecarttype 179,728 | |Ecarttype 574,784
n 20 n 20
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Arbre de classement

A bord duTitanic &

SURV (Echant

tilon d'apprentissage)

Catégorie % n

Noeud 0

1

3299 511
67,01 1038]

Total

(100,00) 1549

SEX
Prob. ajustée - valeur=0,0000, Khi-deux=341,5082, ddi=1

1

Florian Pothin

Noeud 2

Noeud 1
Catégorie % n Catégorie % n
1 21,08 253 7 7 258
=0 7892 947 50 Ell
Total __(77.47) 1200 Tolal __ (22.53) 349
CLASS
Prob. ajustée - valeur=0,0000, Khi-deux=95,2036, ddi=2
| [ |
1 20 3
Noeud 5 Noeud 6 Noeud 7
Catégorie % n Catégorie % n Catégorie % n
Ol 9646109 (K 87,00 87 BT 9559 62
[Exy 350 4 EXY 13,00 13 E0 5441 74

Machine Learning supervisé avec R

Page 36/106



Classement ou régression par arbre

» Détermination pour chaque nceud de I'ensemble des
divisions possibles (variables et conditions sur ces
variables)

» Application d'un critére (Cl) permettant de sélectionner
la meilleure division possible du nceud

» Application d’un (ou plusieurs) critére(s) d'arrét (C2) des
divisions

» Application d’une reégle d'affectation de chaque nceud
terminal

a une classe deY siY est qualitative
a une valeur deY siY est quantitative
= prédiction de Y pour chaque individu
» Estimation de I'erreur, du colit associé a l'arbre
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Critéres d’arrét

» Le critére d’arrét (C2) peut combiner plusieurs regles :
la profondeur de I'arbre a atteint une limite fixée
ou le nombre de feuilles a atteint un maximum fixé

ou ['effectif de chaque nceud est inférieur a une valeur fixée en
deca de laquelle on estime qu’il ne faut plus diviser un nceud

ou la division ultérieure de tout nceud provoquerait la naissance
d'un fils d’effectif inférieur a une valeur fixée

ou la qualité de I'arbre est suffisante (et en tout cas si tous les
individus de chaque feuille sont dans la méme classe, en
classement)

ou la qualité de I'arbre n’augmente plus de fagon significative
» Le critere de qualité dépend du type d’arbre
exemple :la pureté dans I'arbre CART

Florian Pothin Machine Learning supervisé avec R Page 38/106



Critéres de choix de scission d’un nceud

» Le critére du X2
lorsque les variables explicatives sont qualitatives
utilisé dans les arbres CHAID et QUEST
» Les critéres basés sur une fonction d’impureté
pour tous types de variables explicatives
l'indice de Gini est utilisé dans I'arbre CART
I'indice Twoing est utilisé dans I'arbre CART lorsque la variable a
expliquer a = 3 modalités
l'indice Twoing ordonné est utilisé quand la variable a expliquer est
ordinale
I'entropie est utilisée dans les arbres CART, C4.5 et C5.0

plus les classes sont uniformément distribuées dans un nceud, plus la
fonction d’impureté est élevée ; plus le nceud est pur, plus elle est
basse
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Arbres de classement

v

La variable a expliquerY est une variable nominale (ou ordinale) a k
modalités, définissant k groupes d’individus G, d’effectifs n,
» On peut considérer que les probabilités a priori P(G)) sont :

toutes égales

ou égales aux fréquences empiriques n/n

ou fixées a priori par une connaissance experte
Pour tout nceud t, soient P(t/G)) la probabilité d’étre dans le noceud t si
on est dans la i® classe, P(t) la probabilité du nceud et P(G/t) la
probabilité d’étre dans G; si on est dans t
On a : P(G/t)P(t) = P(t/G)P(G) (formule de Bayes)
Dans le 2¢ cas ci-dessus (P(G) = n/n),ona:

P(G/t) = (n/n)P(t/G)/P(t) = (n/n)(n,(t)/n)/(n(t)/n) = n(t)/n(t)

proportion d'individus du nceud t qui sont dans G, = notée plus simplement f;

v

v v

c’est le cas le plus fréquent, dans lequel nous nous placerons pour la suite
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Prédiction dans un arbre de classement

v

Affectation d’un nceud terminal t au groupe G, pour lequel P(G/t) est
maximale

quand P(G/t) = n,(t)/n(t) = affectation du nceud t au groupe de plus grand
effectif dans t

Affectation d’un individu :

v

d’abord a un nceud t, en fonction des valeurs de ses variables explicatives
ensuite au G; auquel est affecté le nceud t
avec une prédiction P(G/t) (la méme pour tous les individus du nceud)
» On peut introduire des colits de mauvais classement : C; = coit
d’affectation d’un individu a G; alors qu'il est dans G;
onaC; =0 etle cas le plus fréquent est celui ou C; = | pour tous i #j
Le coiit d’affectation du nceud t a G; est Z}Ll CijP(Gj/t)

On affecte alors t au G; de colt minimal et non au P(G;/t) maximal

v

v
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Fonction d’impureté

» Une fonction d’impureté est une fonction :

positive, concave, symétrique (elle ne dépend que de la proportion dans
laquelle est présente chaque classe dans le nceud, et ne varie pas si 'on
permute les classes par rapport aux proportions)

minimale lorsque tous les individus qui composent le noeud appartiennent
a la méme classe

maximale lorsque toutes les classes sont présentes dans la méme
proportion dans le nceud
» Principales fonctions d’impureté :
indice de diversité de Gini
entropie
plus petite proportion d’une classe dans un nceud (fonction non dérivable
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Indice de diversité de Gini
» Indice de Gini d'un nceud = | - 3f2 = 5, ff = %, P(G/)P(G/1)

ou les f; = n(t)/n(t),i = | a p, sont les fréquences relatives dans le nceud des p
classes a predire (variable a expliquer), égales a P(G/t) dans le cas le plus
fréquent

= probabilit¢ que 2 individus, choisis aléatoirement dans un nceud,
appartiennent a 2 classes différentes
Plus les classes sont uniformément distribuées dans un nceud,
plus l'indice de Gini est élevé ; plus le nceud est pur, plus 'indice
de Gini est bas
avec 2 classes, 'indice va de 0 (nceud pur) a 0,5 (mélange maximal) — avec 3
classes, I'indice va de 0 a 2/3
» Chaque scission en p nceuds fils (d’effectifs nj, n, ... n)) doit
provoquer la plus grande hausse de la pureté, donc fa plus
grande baisse de l'indice de Gini. Autrement dit, il faut
minimiser : Gini(fils) = f=1%Gini(i" fils)

v

v

Par concavité, on a toujours Gini(pére) = Gini(fils)
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Mécanisme de scission des noeuds avec Gini

Article Prix Achat

(exemple :

catalogue 1 125 N

avec prix 2 100 N

des articles

et achat 3 70 N

O/N) 4 120 N
5 95 (0]
6 60 N
7 220 N
8 85 (6]
9 75 N
10 90 (0]
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Mécanisme de scission des nceuds avec Gini

Achat N N N o o [0} N N N N

Prix 60 70 75 85 90 95 100 120 125 220

Seuil 55 65 72,5 80 87,5 92,5 97,5 110 122,5 172,5 230
s>l |>]|<s|>|s|>|<s|>]|<s|>]< > < |>] < > < |>l<|>

o 0(3[0(3|0[3|0f3]1]2|2]|1]|3 0 3103 0 3.1013]0

N 0|71 |6]|2|5]|3[4(3|4[3]|4]3 4 4 135 2 6 (1710

Gini | 0,420 | 0,400 | 0,375 | 0,343 | 0,417 | 0,400 0,300 0,343 0,375 0,400 | 0,420

Florian Pothin
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Entropie de Shannon

v

Entropie (ou « information » ou « déviance ») d’'un nceud t
=~ %, filog(f) =~ %, P(G/t)log(P(G/1))

ou les f,i = | a p, sont les fréquences relatives dans le nceud des p classes
a prédire

v

Plus les classes sont uniformément distribuées dans un noeud,
plus I'entropie est élevée ; plus le nceud est pur, plus I'entropie
est basse

elle vaut 0 lorsque le noeud ne contient qu’une seule classe
C’est une fonction d’'impureté comme lindice de Gini et elle
produit des scissions peu différentes de I'indice de Gini

v

» Comme précédemment, il faut minimiser I'entropie dans les
noeuds-fils
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Comparaison des fonctions d’impureté

» Lentropie est toujours plus grande que I'indice de Gini, et leurs
valeurs maximales sont |-(1/k) pour I'indice de Gini et —log(—
1/k) pour I'entropie (pour k classes)

» Elles valent par exemple 0,5 et environ 0,69 pour k =2

» On peut mettre a I'échelle ces deux courbes f(f,) en multipliant
I'entropie par [1-(1/k)] / [ —log(—1/k)]

—4—Indice de Gini —o—Indice de Gini

Entropie Entropie

—o—Min ~@=Min
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Utilité de la concavité

» La concavité d’une fonction f = si A et B sont deux points du graphe G(f) de
la fonction, le segment [A,B] est entiérement situé sous G(f)

fix+ @A -y) 2tf)+ A -t)f(y),t€[0,1]
La concavité assure la diminution systématique de I'impureté lorsque I'on
scinde un nceud pére en plusieurs nceuds-fils

Autrement dit, on a toujours (sachant que n = n, + n,) :

v v

v

»
n:
Gini(pére) > Z#Gini(ie fils) =«
i=1

n n, n n
.. (Mg .g d cq 9 e rg d . . (cd
Gini (— + — ) > —=Gini + —Gini
094 T ) = 0 Gini(£7) + 4 Gini(£)
La diminution systématique de I'impureté garantit la convergence du
processus de scission successive des nceuds

v

v

Il est toutefois prévisible que, comme pour tout modeéle trop complexe, un
arbre de profondeur maximale ne puisse que conduire au sur-apprentissage
= nécessité d’une stratégie de limitation de la complexité (voir plus loin)

Florian Pothin Machine Learning supervisé avec R

Page 48/106



Choix d'une fonction d’'impureté 1/2

4

v

v

v v

v

Pour I'optimisation, préférer une fonction dérivable comme l'indice
de Gini ou I'entropie
lls décroissent plus fortement que le taux d’erreur quand les nceuds
sont plus purs
Exemple de 1000 individus dont 500 appartiennent a chaque classe,
avec un arbre T1 répartissant ces individus en (400,100) dans un
neceud et (100,400) dans un autre, et un arbre T2 répartissant ces
individus en (315,25) dans un nceud et (185,475) dans un autre
T2 est préférable car il conduit a un premier nceud tres pur
On peut vérifier que 'on a :
indice de Gini = 0,32, entropie = 0,50 et taux d’erreur = 0,20 pour T|
indice de Gini = 0,31, entropie = 0,48 et taux d’erreur = 0,21 pour T2
Le critére du taux d’erreur conduirait donc a retenir T| alors que
I'arbre T2 que nous préférons est retenu par I'indice de Gini et
I'entropie
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Choix d'une fonction d’'impureté 2/2

» Discussions sur le choix de 'indice de Gini ou I'entropie
» Breiman, Friedman, Olshen et Stone préferent I'indice de Gini
tout en reconnaissant que le choix d’un critére ou d’un autre influe
peu sur I'arbre produit, et moins en tout cas que la stratégie d’élagage
» Mais I'indice de Gini :
est simple et donc rapide a calculer (un simple produit 2f,f, dans le
cas de deux classes)
permet d'intégrer naturellement des cofits C; de mauvais classement
dans la formule ;.. ; Cj; fif;
limite plus que I'entropie I'apparition de « end cut splits » (scissions
déséquilibrées ou I'un des noeuds fils est trés pur mais tres petit)

car I'entropie décroit plus fortement que I'indice de Gini quand les nceuds
sont plus purs (voir précédemment)
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Cas des arbres de régression

v

Impureté = variance(Y) dans le nceud : I'objectif de baisse de
limpureté se traduit en objectif de variance la plus faible
possible dans les nceuds-fils (variance intra-classe)

v

Réduction de I'impureté = variance totale (nceud-pére) —
variance intra-classe (intra nceuds-fils) = variance inter-classe
(inter-nceuds fils)

Prédiction : les observations d'un nceud terminal se voient
affecter comme valeur deY la moyenne dans le nceud

v

v

Colit (erreur) d’'un noeud t = variance de Y dans t = impureté(t)

v

On peut calculer la somme des colts dans les nceuds (pondérés
par les effectifs), et la normaliser par la variance deY dans la
racine
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Les principaux arbres de décision 1/2

» CHAID (CHi-Square Automation Interaction Detection)
utilise le test du X2 pour déterminer la variable la plus significative
pour chaque scission et le découpage de ses modalités
adapté a I'étude des variables explicatives discretes (les variables
explicatives continues peuvent étre discrétisées)

» QUEST
variable a expliquer nominale
utilise le test du x? comme CHAID mais pour produire des
scissions binaires comme CART
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Les principaux arbres de décision 2/2

» CART (Classification and Regression Tree)
cherche a maximiser la pureté des nceuds
adapté a 'étude de tout type de variables explicatives
dispositif d’élagage
utilisation de variables équidivisantes pour gérer les valeurs manquantes
généralement binaire (chaque noeud a au plus deux nceud-fils)
» C5.0

cherche a maximiser le gain d’information réalisé en affectant chaque
individu a une branche de I'arbre
adapté a 'étude de tout type de variables explicatives

transformation de I'arbre en regles qui permet une simplification par
suppression des régles redondantes
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Arbre CHAID - Algorithme 1/2

» Cet arbre est de conception plus ancienne (principe : 1975,
Hartigan ; algorithme : 1980, Kass)

» |l traite directement les variables explicatives discrétes ou
qualitatives, et discrétise automatiquement les variables
explicatives continues

»  La variable a expliquer est qualitative a k modalités
»  Utilise plusieurs fois la statistique du x2:

On construit pour chaque prédicteur X, le tableau de
contingence X; xY et on effectue les étapes 2 et 3

On sélectionne la paire de modalités de X; dont le sous-tableau
(2 x k) a le plus petit X2. Si ce X* n’est pas significatif (p-value > a
un seuil fixé), on fusionne les 2 modalités et on répéte cette
étape jusqu’a ce que toutes les paires de modalités (simples ou
composées) aient un X? significatif ou jusqu’a ce qu'’il n’y ait plus
qu’une seule modalité. Si X, est ordinale ou quantitative, seules
sont considérées les paires de modalités adjacentes
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Arbre CHAID - Algorithme 2/2

Eventuellement, pour chaque modalité composée d’au moins 3
modalités originales, on détermine la division binaire au X? le plus
grand. S'il est significatif, on effectue cette division (méme si le X* de
(A,B) xY n’était pas significatif, ni celui de (ALIB,C) xY, le X*> de
(A,BOC) xY pourrait étre significatif)

On calcule la significativité (p-value associée au X?) de chaque
prédicteur X; dont les modalités ont été précédemment regroupées et
on retient le prédicteur le plus significatif. Si la p-value du X?* est
inférieure au seuil choisi, on peut diviser le nceud en autant de nceuds-
fils qu’il y a de modalités apres regroupement.Si la p-value dépasse le
seuil spécifié, le nceud n’est pas divisé

»  Ajustement de Bonferroni
Lors du calcul de la significativité de tous les prédicteurs (étape 4),
on peut multiplier la valeur de la probabilité du X? par le coefficient
de Bonferroni, qui est le nombre de possibilités de regrouper les m
modalités d’un prédicteur en g groupes (| < g <m)
Ce calcul permet d’éviter la surévaluation de la significativité des
variables a modalités multiples

Florian Pothin Machine Learning supervisé avec R Page 55/106



Arbre CHAID - Caractéristiques

v

CHAID traite I'ensemble des valeurs manquantes comme une
seule catégorie (qu'il fusionne éventuellement avec une autre)
pas d’utilisation de variables équidivisantes
Il nest pas binaire et produit des arbres souvent plus larges que
profonds
utile pour la discrétisation de variables continues
Le nombre de nceuds fils dépend des seuils fixés pour le test du
XZ
Pas de dispositif d’élagage : la construction de I'arbre s’acheve
des que les critéres d’arrét sont rencontrés
» R :package CHAID sur R-Forge

> install.packages ("CHAID", repos="http://R-Forge.R-
project.org")

> library ("CHAID")

v

v

v
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Discrétisation avec CHAID 1/4

» Supposons que nous voulions prédire une variable cible a I'aide
de certaines variables explicatives, dont I'age, et que nous
voulions découper I'dge en classes pour ces raisons :

prise en compte de la non-monotonie ou non-linéarité de la réponse en
fonction de I'age

suppression du probléme des extrémes
modele plus robuste
» Nous allons découper 'dge en |0 tranches (ou plus, si le
nombre d’individus est grand) et regarder le % d’individus dans
la cible pour chaque classe d’age
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Discrétisation avec CHAID 2/4

Florian Pothin

cible
non oui Total

tranche dage  18-25ans  Effectif 127 81 208
% dans tranche dage 61,1% 38,9% 100,0%

25-29 ans  Effectif 104 126 230
% dans tranche ddge 452% 54,8% 100,0%

29-32ans  Effectif 93 101 194
% dans tranche d'age 479% 52,1% 100,0%

32-35ans  Effectif 113 99 212
% dans tranche d'age 53,3% 46,7% 100,0%

35-38 ans  Effectif 93 94 187
% dans tranche d'age 49.7% 50,3% 100,0%

38-40 ans  Effectif 149 123 272
% dans tranche dage 54.8% 452% 100,0%

40-42 ans  Effectif 108 72 180
% dans tranche ddge 60,0% 40,0% 100,0%

42-45ans  Effectif 116 97 213
% dans tranche d'age 545% 455% 100,0%

45-51 ans  Effectif 77 113 190
% dans tranche d'age 40,5% 595% 100,0%

>51ans Effectif 71 145 216
% dans tranche d'age 329% 67,1% 100,0%

Total Effectif 1051 1051 2102
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Discrétisation avec CHAID 3/4

» Nous voyons que certaines classes sont proches du point du
vue du % dans la cible :

tranches 2 et 3
tranches 4 a 8

tranches 9 et 10

Prob. ajustée

PROPENS

Noeud 0

Catégorie % n
50,00 1051
50,00 1051

(100,00) 2102

m O
BN
Total

AGE

- valeur=0,0000, Khi-deux=50,4032, ddI=3

I
<24

I
(2432)

|
>45

(32‘,45]

Noeud 6 Noeud 7 Noeud 8 Noeud 9
Catégorie % n Catégorie % n Catégorie % n Catégorie % n
m 0 3894 81 m O 5354 227 O 45,58 485 m o 63,55 258
N 61,06 127 N 46,46 197 N 54,42 579 N 36,45 148
Total (9,90) 208 Total (20,17) 424 Total (50,62) 1064 Total (19,31) 406

» CHAID a fait automatiquement ce que nous avons fait

manuellement
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Discrétisation avec CHAID 4 /4

v

Pour la scission de la racine de I'arbre, la variable AGE est
retenue devant la variable REVENUS car la probabilité associée
au X des REVENUS est plus grande que celle associée a 'AGE

variable | chi2 | ddl proba wégo'r‘;e“dni .,
age 50,40 3 0,0000000001
reVENUS 34,05 2 00000001934

REVENUS
Prob. ajustée - valeur=0,0000, Khi-deux=34,0522, ddi=2

<:‘350 (350,2667] >2Ts7

Noeud 10 Noeud 11 Noeud 12
Catégorie % n Catégorie % n Catégorie % n
50 B33 70 &0 5360 789 50 7571 192
=N 6667 140 w N 4640683 N 5429 228
Total (9.99) 210 Total (7003] 1472 Total (19,98) 420

» Sile nombre de degrés de liberté n’est pas le méme pour deux
variables, il faut comparer les p-values et non les X2
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Arbre CART

Décrit dans I'ouvrage classique de Breiman, Friedman, Olshen et
Stone (1984) : Classification and Regression Trees
Le critére de division est basé sur une fonction d’'impureté
Optimal : toutes les scissions possibles sont examinées
Optimal : dispositif d’élagage performant
I'arbre maximum construit, 'algorithme en déduit une séquence de sous-
arbres par élagages successifs, et retient celui qui optimise un certain critére

Général : variable a expliquer quantitative ou qualitative
CART sert a la régression comme au classement
Général : CART permet la prise en compte de colts C; de mauvaise
affectation (d’un individu de la classe j dans la classe i) er les intégrant
dans le calcul de l'indice de Gini X;..; Ci;fi f;
» Dans sa version la plus courante, CART est binaire
pour segmenter moins rapidement les données
» Gére les valeurs manquantes en recourant aux variables
équidivisantes (« surrogate variables »)
différent de CHAID
» R :packages rpart, tree et rpartOrdinal (Y ordinale)

v

v v v

v

v
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Scission avec CART

» La scission de la racine se fait par I'dge, comme avec CHAID, mais
I'arbre binaire est moins équilibré :

Noeud 0
Catégorie % __n
o 50,00 1051
50,00 1051
Tolal___(100,00] 2102

Noeud 2
Catégorie % n
LIe) 63,55 258
L] 3645 148
Total (19,31)_406

» On peut aussi pénaliser les scissions déséquilibrées

multiplier la baisse d’impureté par un coefficient (pcpp)* dépendant de la
proportion d’individus allant a gauche et de la proportion d’individus
allant a droite, avec 2 0 (0 pour la scission habituelle)

» Ces scissions déséquilibrées sont moins rares avec I'entropie
» CART est apte a détecter rapidement des profils trés marqués
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CART et complexité du choix (C1)

» Si une variable explicative qualitative X a un ensemble E de n
valeurs possibles x, ..., x,, toute condition de séparation sur
cette variable sera de la forme

XOFE,ou E’OE-{0}
> 2™ — | conditions de séparation possibles

» Pour une variable explicative continue X, la complexité est liée

au tri des valeurs x, ..., x, de X, puisqu’une fois les variables
dans l'ordre x, < ... < x,, il suffit de trouver l'indice k tel que la
condition

X < moyenne (X, , X+ ;)
soit la meilleure (selon le critére choisi, par exemple Gini)
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Variables équiréductrices

v

Variables assurant la réduction de I'impureté des nceuds la plus
proche possible de celle de la variable retenue

v

Variables « concurrentes » (« primary splits ») utilisées lors de
la construction de la variable pour repérer d’éventuelles
variables plus intéressantes que celles retenues en premiere
approche

plus fiables

mieux acceptées par les experts métiers

moins colteuses a collecter
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Variables équidivisantes

» Variables répartissant les individus de la fagon la plus proche
possible de celle de la variable retenue avec sa scission
si le noeud est scindé par la condition {X < x}, on recherche les
variables équidivisantes avec des arbres de profondeur | ayant la
condition {X < x} pour variable a expliquer (et sans colts de
mauvais classement)

soit n le nombre d’individus, n, le nombre d’individus bien classés par

l'arbre précédent et n, le nombre d’individus bien classés par la régle

majoritaire :

la concordance de la variable équidivisante est (n;-ng)/(n-ny)

on ne s’intéresse qu’aux variables équidivisantes de concordance > 0

» Variables « de rechange » ou « suppléantes » (« surrogate

splits ») utilisées en cas de valeur manquante pour un individu
de la variable retenue
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Variables équidivisantes : exemple

» Si la scission d’un nceud est produite par la condition {X < x},
et si une variable équidivisante est {Y <y}, avec un croisement

Y<y Y2y
X <x 40 20
X2 x 4 80

v

la concordance vaut (120-84)/(144-84) = 0,6

» C’est mieux que la régle de la majorité consistant a affecter
tous les individus a la modalité {X = x}

On ne calcule pas la concordance 120/144 (0,833) car on veut
mesurer le gain de concordance par rapport a la régle
majoritaire
ainsi un bon classement de 72 individus sur 144 n’est pas affecté d’un
taux de 0,5 mais de -0,2 (72-84/144-84) car il est inférieur a la régle
majoritaire qui classe bien 84 individus

v
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Traitement des valeurs manquantes

» Apprentissage :
un individu participe si sa variable a expliquer et au moins une variable
explicative ont une valeur non manquante
l'indice de Gini de la scission {X < x} d’un nceud est calculé sans prendre
en compte les individus avec X manquant

on ajuste les n,/n pour que leur somme = |

» Application :
si X est manquant pour un individu, il :
n’est pas affecté a un nceud-fils et reste au niveau du pére (paramétre
usesurrogate =0 de rpart)
est affecté a un nceud-fils a 'aide d’une variable équidivisante (paramétre
usesurrogate = | ou 2 de rpart)
[ si aucune variable équidivisante, application de la régle majoritaire (usesurrogate =2,
valeur par défaut) ou on reste au niveau pére (usesurrogate = |)
on a toujours une prédiction # NA car méme si tous les prédicteurs
impliqués dans des scissions sont manquants pour un individu, il est
affecté a la racine avec les probabilités a priori
saufsina.action = na.omit ouna.action = na.fail
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Importance d’une variable

» Une variable X| peut ne jamais apparaitre dans I'arbre, tout en étant
trés corrélée a une variable X2 qui apparait souvent et la masque
= il ne faut pas évaluer I'importance de XI en ne considérant que les nceuds
de I'arbre ot X| a été retenue pour la scission
» Importance d’une variable dans un nceud :

= baisse d’impureté de la scission produite par la variable si elle a été retenue
pour la scission du nceud

= (baisse d’impureté x concordance avec la variable retenue), si la variable est
équidivisante pour ce nceud (de concordance > 0)

=0 sinon

» Importance d’une variable dans un arbre :
somme de I'importance de la variable dans I'ensemble des nceuds
normalisée pour que la somme des importances des variables = 100
rpart met I'importance d’une variable a 0 si elle est < 0,01
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Elagage et sur-apprentissage

taux
d'erreur données de test

et d'application

données apprentissage

profondeur arbre
élaguer ici (nb de feuilles)

v

Il est préférable d’élaguer un arbre pour éviter la remontée du
taux d’erreur due au sur-apprentissage

Relative Cost vs Number of Nodes

030 0-248
g 02
O o2
o
= 02
§ 0.22 Source : CART (Salford)
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Elagage dans CART

» |l faut trouver le bon compromis entre I'ajustement de I'arbre
en apprentissage (biais) et sa capacité de généralisation
(variance)

v

Le Lasso traite ce probléme par 'ajout d’une pénalisation dont
'augmentation progressive annule un a un les coefficients de la
régression

v

La stratégie inventée par les inventeurs de CART consiste a
commencer par construire un arbre maximal avant de I'élaguer
en coupant les branches jugées les moins généralisables

v

Ce n’est pas l'indice de Gini ni 'entropie qui sont utilisés pour
controler 'élagage, mais le taux d’erreur
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Cout-complexité d'un arbre

Complexité (ou taille) de 'arbre : nombre de feuilles (# racine)
Colit-complexité Cp(arbre) = CR(arbre) + CP.(# feuilles)
CR : colt de l'arbre calculé par resubstitution (sur les données
d’apprentissage)
ce colit est généralement un taux d’erreur dans un arbre de classement,
et une erreur quadratique en régression (mais il peut intégrer des colts
de mauvaise affectation)
Minimum de CR atteint pour I'arbre maximal T, : attention au sur-
apprentissage !
Solution :augmenter progressivement le paramétre de complexité CP
et chercher un sous-arbre T, O T, minimisant le colit-complexité
Cor
Pour CP = 0, le sous-arbre minimisant le colt-complexité est I'arbre
maximal, mais lorsque CP augmente, le nombre de feuilles représente
un colit et la somme « CR(arbre) + CP.(# feuilles) » est minimisée
pour un nombre plus petit de feuilles

v v v

v

v

v

Florian Pothin Machine Learning supervisé avec R Page 71/106



Premier résultat sur ’élagage

» Quand CP augmente, le sous-arbre T, minimisant C, est de plus en
plus petit = on a une séquence descendante des tailles des arbres
a la complexité CP = 0 correspond I'arbre maximal
au-dela d’un certain seuil de CP, il faut que le nombre de feuilles soit nul, car le
colit par resubstitution de 'arbre réduit a la racine est inférieur a celui de
n'importe quel arbre augmenté de CP

v

Ier résultat : si deux sous-arbres minimisent le colt-complexité pour
une valeur CP, alors ils sont égaux ou I'un contient l'autre = il existe
un arbre T, de taille minimale qui minimise le colit-complexité C,

v

Quand CP parcourt I'ensemble infini des valeurs réelles = 0,
’ensemble des arbres T, est fini, et un arbre T, minimise aussi Cp
pour une valeur CP’ > CP jusqu’a ce que CP’ atteigne une valeur a
laquelle corresponde un arbre T, strictement plus petit que T¢,

v

On obtient ainsi une séquence croissante des CP, a laquelle
correspond une séquence décroissante des T,
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Second résultat sur 1’élagage

» 2¢ résultat : ces arbres sont inclus les uns dans les autres, ce qui
signifie que chacun est obtenu par élagage du précédent

De plus, il existe une procédure simple et rapide pour
déterminer la branche de T, a élaguer a chaque étape :il faut
trouver la plus petite valeur CP’ > CP pour laquelle T, a un
neeud {t} tel que Cep({t}) = Cp(branche de T, ayant {t} pour
racine)
cette valeur existe puisqu’une pénalisation suffisamment grande finira
par donner a la branche issue d’un nceud {t} un colit-complexité plus
grand qu’au nceud lui-méme
On peut donc élaguer cette branche puisque I'arbre élagué en
{t} conduit au méme colit-complexité pour CP’

Ce processus est effectif et assez rapide a mettre en ceuvre

bien plus que s’il fallait effectuer une recherche exhaustive des sous-
arbres de T,

v

v

v
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Synthese

» Par élagage successif, nous avons obtenu une séquence de sous-
arbres emboités

T 0T, 0T,0...OT,, = {racine}
de complexités croissantes
0=CP,<CP, <CP,<...CP,
et dans laquelle chaque T, est le sous-arbre dont le colt par

resubstitution est le plus bas de tous les sous-arbres de T,
méme taille

Cette séquence de sous-arbres étant obtenue, il reste bien s(ir a
déterminer le niveau optimal de complexité pour I'ajustement
et la généralisation du modéle

En pratique (voir le package rpart), on peut limiter la
séquence explorée en fixant une valeur minimale CP, > 0 (c’est
le parameétre cp)

v

v

de

max

v

v
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Mise en ceuvre avec R

» Package le plus utilisé : rpart (Recursive PARTitioning)
a la base de ipred pour le bagging et ada pour le boosting
ne gere pas d’échantillon de test (contrairement a randomForest)
autre package (moins rapide) : tree
Pour le classement (mnethod = class) et la régression (method
= anova)
Avec l'indice de Gini (split = gini) et I'entropie (split =
information)
Permet de spécifier des colits, I'utilisation de variables équidivisantes,
la pénalisation minimale de la complexité dans le processus d’élagage
(cp) ou la profondeur maximale (maxdepth), I'effectif minimum
d’un nceud pour étre scindé (minsplit) et I'effectif minimum d’une
feuille (minbucket, valeur par défaut = minsplit/3)
Arbre de profondeur maximale :

> cart <- rpart(y ~ ., data = train, method="class",
parms=1list (split="gini"), cp=0)

v

v

v

v
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Mise en ceuvre avec R (suite)

» Arbre avec contraintes sur I'élagage :
> cart <- rpart(y ~ . , data = train, method="class",
parms=list (split="gini"), control=list (minbucket=30,
minsplit=30*2, maxdepth=4))

» « Stump » (arbre a deux feuilles) :
> cart <- rpart(y ~ . , data = train, method="class",
parms=1list (split="gini"), control=1list (maxdepth=1,cp=-
1,minsplit=0))

» Evolution de I'élagage en fonction de la pénalisation
> printcp(cart)

» Affichage des informations précédentes + variables concurrentes et
suppléantes, et importance des variables
> summary (cart, digits=3)

» Elagage a un niveau de pénalisation fixé :
> prunedcart4f <- prune (cart, cp=0.0328152)

a noter : pas d’application automatique dans rpart de la régle | SE ou 0 SE
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Détail de 'arbre

> cart # commande équivalente & "print (cart)"
n= 666

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 666 200 0 (0.69969970 0.30030030)
2) Comptes=CC > 200 euros,Pas de compte 300 35 0 (0.88333333 0.11666667)
4) Montant_credit< 9504 291 30 0 (0.89690722 0.10309278)

8) Objet_credit=Autres,Electroménager, Formation,Mobilier,Vidéo HIFI,Voiture
neuve, Voiture occasion 247 18 0 (0.92712551 0.07287449) *

9) Objet_credit=Business,Etudes,Travaux 44 12 0 (0.72727273 0.27272727)
18) Autres_credits=Aucun crédit 33 5 0 (0.84848485 0.15151515) *

» Pour chaque nceud, nous avons :
son numéro node, par exemple « 2 »
sa regle de scission split, par exemple « Comptes=CC > 200 euros,Pas de compte »
le nombre n d'individus dans ce nceud, par exemple « 300 »
le nombre loss d'individus mal classés ([J classe majoritaire), ici « 35 »
la valeur prédite yval, qui est la classe majoritaire, ici « 0 »
la probabilité d’appartenance a chaque classe, ici (0,88333333 et 0,1 1666667)
le cas échéant, I'indication par un * a la fin de la ligne que le noeud est terminal
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Variables concurrentes et suppléantes

»

Node number 1: 666 observations,  complexity param=0.07
predicted class=0 expected 10ss=0.3 P (node) =1
class counts: 466 200
probabilities: 0.700 0.300
left son=2 (300 obs) right son=3 (366 obs)

Primary splits:

Comptes splits as RRLL, improve=36.8,
Epargne splits as RLLRL, improve=14.0,
Historique_credit splits as LLRRL, improve=14.0,
Montant_credit < 8020 to the left, improve=12.5,
Duree_credit < 34.5 to the left, improve=11.3,

surrogate splits:

Epargne splits as RLLRL, agree=0.629,
Objet_credit splits as RRRRRRLLRL, agree=0.581,
Historique credit  splits as RLRRR, agree=0.578,
Age < 40.5 to the right, agree=0.575,

Anciennete_domicile splits as RRLR, agree=0.572,

Node number 2: 300 observations,  complexity param=0.00667
predicted class=0 expected 10ss=0.117 P (node) =0.45
class counts: 265 35

probabilities: 0.883 0.117

Florian Pothin

(0 missing)
(0 missing)
(0 missing)
(0 missing)

(0 missing)

2dj=0.177,
2d3=0.070,
2dj=0.063,
2dj=0.057,
adj=0.050,

©
©
©
©
©

Affichage de la fonction summary (primary splits : variables concurrentes, surrogate splits : suppléantes)

split)
split)
split)
split)
split)

Machine Learning supervisé avec R

Page 78/106



Affichage d’'un arbre dans R avec
rpart.plot

» Affichage amélioré par rapport a la fonction plot de rpart :
> library (rpart.plot)
> cols <- ifelse (prunedcart4f$frame$yval == 1,"green3","red")

> prp (prunedcart4f, type=2, extra=101,
split.box.col="1lightgray", nn=TRUE, Sﬁ}=cols, border.col=cols)
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Affichage d’'un arbre dans R avec partykit

» Affichage amélioré par rapport a la fonction plot de rpart :
> library (partykit)
> plot (as.party (prunedcart4f))

G20 mrog Pasdecorets O {0200 sl G <Ouse

/

- Noto 2002302 . Mo 410191 .
o8 I 08 06
o4 04 04 06
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Affichage d’'un arbre dans R avec rattle

» Affichage amélioré par rapport a la fonction plot de rpart :
> library(rattle)
> fancyRpartPlot (prunedcart4f, sub=" ")

Comptes = CC > 200 euros,Pas de compte {no}

Duree_credit <22

Obiet_credit = Autres,Voiture occasion
0 0 0 1
87 13 65 35 73 27 37 63
A47% 30% 3% 20%
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Evolution du paramétre de complexité

» Avec cp = 0, la fonction printcp de rpart affiche :

1 0
2 0
3 0
4 0
5 0
6 0
70
8 0
9 0
10 0
11 0

Florian Pothin

CP nsplit rel error xerror

.0700000
.0650000
.0350000
.0183333
.0150000
.0133333
.0100000
.0075000
.0066667
.0033333
.0000000

0
3
4
5
8
10
14
15
17
20
23

1.
.790
.725
.690
.635
.605
.550
.540
.525
.505
.495

O O O O O O o o o o

000

1.
.000
.810
.770
.840
.825
.805
.880
.880
.915
.960

o O O O O O o o o -

000

O O O O O O o o o o o
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xstd

.059148
.059148
.055361
.054404
.056041
.055705
.055245
.056897
.056897
.057601
.058448
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Explication du tableau

»  Ce tableau affiche, en fonction de CP:
rel error : erreur calculée par resubstitution

xerror : erreur calculée par |0-validation croisée

nsplit :nombre de scissions (= nombre de feuilles — 1)
»  Les taux derreur affichés sont relatifs : ils ont été mis a I'échelle afin de valoir | pour I'arbre réduit a la racine

»  Or l'arbre réduit a la racine n’a pas un taux d’erreur égal a | mais a € (en affectant tous les individus a la
classe majoritaire) = chaque ligne du tableau doit étre multipliée par € pour obtenir I'erreur absolue

CP nsplit rel error xerror xstd
1 0.0700000 0 1.000 1.000 0.059148
11 0.0000000 23 0.495 0.960 0.058448

> lci € = 200/666 et I'erreur par resubstitution de I'arbre maximal = € x 0,495 = 0,1486486
»  On peut vérifier ce calcul :

> sum(predict (cart,type="class") != train$Cible)/nrow (train)

[1]1 0.1486486
»  Etcalculer I'écart-type relatif de I'erreur par validation croisée :

> x <- 0.960%200/666 # xerror absolue

> sqrt ((x* (1-x))/666) / (200/666)

[1] 0.05844841
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Lecture du tableau

» Reprenons le tableau

1 0.
2 0.
10 0.
11 0.

CP nsplit rel error xerror xstd
0 1.000 1.000 0.059148

3 0.790 1.000 0.059148

20 0.505 0.915 0.057601

23 0.495 0.960 0.058448

» Ona Cg = (0,0033333 x 20) + 0,505 = (0,0033333 x 23) + 0,495 =
I'arbre élagué correspondant a CP = 0,0033333 est I'arbre a 21
feuilles (20 scissions), puisque son colt par resubstitution, un peu plus
élevé que celui de I'arbre maximal a 24 feuilles, est compensé par une
pénalisation moins grande (et qu’on retient le plus petit des arbres
minimisant le colt-complexité Cc,)

v

Ona (0,07 x 3) + 0,79 = | = (0,07 x 0) + | (colt-complexité de

I'arbre réduit a la racine) = I'arbre élagué correspondant a CP = 0,07

est la racine
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Régles d’élagage

» « 0 SE » : élaguer I'arbre au minimum du taux d'erreur (plus
généralement, du co(it) calculé par validation croisée ou sur un
échantillon de test

v

« | SE » : élaguer I'arbre au niveau du plus petit arbre (c'est-a-
dire la plus grande valeur de CP) dont I'erreur soit inférieure a
I’erreur minimale plus un écart-type

v

La régle « | SE » conduit a retenir un arbre moins complexe
que la régle « 0 SE », et elle est cohérente avec le fait qu'il faut
tenir compte de la variabilité de I'erreur calculée par validation
croisée

v

Dans les tests sur données simulées effectués par Breiman et al.,
la régle « | SE » conduit a une plus grande stabilité dans la taille
des arbres élagués
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Graphique

» La fonction plotcp produit un graphique représentant
I’évolution de I'erreur par validation croisée et du nombre de
feuilles, en fonction de la pénalisation

size of tree

14@@91115151521@
T e R R

Lerreur Application de « 0
minimale plus 1 SE »
un écart-type . Application de « |
est 5 SE»
représentée E e
par une ligne % | ‘ | Erreur minimale +
horizontaleen % = | W\ ‘ r | écart-type =
pointillés > 0.770 +

~ 0.054404

[1] 0.824404

Florian Pothin Machine Learning supervisé avec R Page 86/106



Elagage automatique

» Application de la régle « | SE»:
> xerr <- cart$cptablel[, "xerror"]
> minxerr <- which.min (xerr)

> seuilerr <- cart$cptable[minxerr, "xerror"] +
cart$cptable [minxerr, "xstd"]

> xerr [xerr < seuilerr][1]
3
0.81
> mincp <- cart$cptable[names (xerr [xerr < seuilerr][1]),
ncpn
> mincp
[1] 0.035
> prunedcart <- prune (cart,cp=mincp)
» Application de la régle « 0 SE » :

prunedcart <- prune (cart,
cp=cart$cptable [which.min (cart$cptable[, "xerror"]),"CP"])
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Prédiction d’un arbre

» Application de 'arbre élagué a I'échantillon de validation :
> prunedcart5f <- prune (cart, cp=0.035
> pred.cart <- predict (prunedcart5f, type="prob", valid)
» Création d’'une matrice avec une colonne par modalité de la variable a
expliquer, chaque colonne contenant la probabilité associée
» Exemple des cinq premiéres valeurs dans I’échantillon de test :
> head (pred.cart, 5)

0 1
1 0.7119565 0.2880435
2 0.3047619 0.6952381
3 0.8833333 0.1166667
4 0.3047619 0.6952381
6 0.8833333 0.1166667

» Aire sous la courbe ROC :
> library (pROC)
> auc(valid$Cible, pred.cart[,2], quiet=TRUE)
Area under the curve: 0.6894
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Aire sous la courbe ROC d’un arbre

» Elagage de 'arbre maximal a 5 et 6 feuilles, application a
I'échantillon de validation et superposition des aires =
sous la courbe ROC

> prunedcart5f <- prune(cart, cp=0.035) ® ]

> pred.cart <- predict (prunedcart5f,
type="prob", valid)

> prunedcart6f <- prune(cart, cp=0.0183333) B
> pred.cart6f <- predict (prunedcart6f,

type="prob", valid)

> roc <- plot.roc(valid$Cible, pred.cartl[,2], 3
col='black', lty=1l, ci=TRUE, quiet=TRUE)

> plot.roc(valid$Cible, pred.cart6f[,2],

add=TRUE, col='red', lty=2, ci=TRUE, quiet=TRUE) ER

Sensitity

> roc.se <- ci.se(roc
specificities=seq(0,1,.01), boot.n=2000)

> plot (roc.se, type="shape", col:wooooffu")

00

> legend ("bottomright",c('6 feuilles','
feuilles'),col=c('red', 'black'), lty= 012 1), 1wd=3) Specitcly
» La courbe ROC de I'arbre a 6 feuilles est a I'intérieur
de l'intervalle de confiance a 95 % de celle de I'arbre a
5 feuilles

»  On constate généralement que les courbes ROC des
meilleurs modéles ajustés sur un méme échantillon sont
a l'intérieur d’un intervalle de confiance a 95 %
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Calcul des erreurs et des aires sous la
courbe ROC

»  Ajout de l'aire sous la courbe ROC a la table des erreurs en fonction du paramétre de

complexité :

> set.seed(235)

> auc <- matrix(NA,nrow(cartScptable)-1,4)

> for(i in 2:nrow(cartcptable))

+

+ cartp < prune(cart, cp-cartscptableli,"Ce"])

+ predc <- predict (cartp, type="prob", valid)[,2]
+ auc(i-1,1) <- cart$cptable[i,"CP"]

+ aucli-1,2] <~ cartscptableli, "nsplit"]+l

+ auc(i-1,3] <- cart$cptablel(i,"xerror"]

+ aucli-1,4] <- auc(validsCible, predc, quiet=TRUE)
+ )

> colnames (auc) <- c("CP","nfeuilles","erreur","AUC")

> aue
c2 nfeuilles erreur auc

[1,1 0.065000000 4 1.000 0.6863462
[2,1 0.035000000 5 0.810 0.6894231
(3,1 0.018333333 6 0.770 0.6869658
4,1 0.0 0. 8
(5,1 0.013333333 11 0.825 0.6846581
16,1 0.010000000 15 0.805 0.6927350
(7,1 0.007500000 16 0.880 0.6864744
(8,1 0.006666667 18 0.880 0.6925427
19,1 0.003333333 21 0.915 0.6822863
[10,] 0.000000000 24 0.960 0.6820299
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Arbre C5.0

4

v

v v

v

C5.0 est adapté comme CART a tout type de variables

C5.0 est plus rapide et gére mieux la mémoire que C4.5 aussi inventé
par J.R. Quinlan

Dispositif d’optimisation de l'arbre par construction puis
élagage d’un arbre maximum

le procédé d’élagage est différent de celui de CART et il est lié a
l'intervalle de confiance du taux d’erreur donc a I'effectif du nceud

Utilisation de I'entropie comme fonction d’impureté

C5.0 n’est pas binaire. Les variables qualitatives, au niveau d’un

noeud pére, donnent naissance a un nceud fils par modalité
inconvénient : les nceuds voient plus rapidement leurs effectifs baisser

Transformation de [l'arbre en regles qui permet une

simplification par suppression de régles redondantes mais fait
perdre la structure d’arbre

R : packages C50 et RWeka
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Prédiction d’une variable ordinale I

4

v v v

v

Les colits de mauvais classement permettent de prédire une
variable ordinale

Soients| <'s; <... < les valeurs ordonnées de Y
Un colit de mauvais classement peut étre C; = [s; — s}|

Une erreur de classement dans une classe adjacente a moins de
poids que dans une classe distante

Lindice de Gini devient alors Z{=1Z§=1 |s; - silfif;

=2 Z;;i(sjﬂ - s]-)Fj(l —Fj) avec F; = ZL:lfh (proportion

cumulée) d’apreés Piccarreta (2001)

=2 ZJ 1 F;(1 — F}) dans le cas (fréquent) ou (s]-+1 - sj) =

pour toutj = |

Z 1 — F;) est 'indice de Gini ordinal de Piccarreta (2008
j= 1 J
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Prédiction d’une variable ordinale II

v

Pour I'élagage d’un arbre avecY ordinale, le taux d’erreur
1on . . . .
;Zizl 15,25(x;) Peut étre remplacé par un colit total de mauvais

classement Y7, |s; — 8(x;)| faisant intervenir la distance entre
la valeur ordinale observée s; et prédite §(x;)

v

Ce colit peut étre utilisé dans le calcul du colit-complexité
utilisé pour I'élagage de I'arbre

» Avec un colit de mauvais classement C; = (s; — 5;)? on peut
montrer que I'indice de Gini est proportionnel a la variance des
valeurs s, s,, ... ,Sp, et que I'objectif de réduction de I'indice de
Gini équivaut a la réduction de la variance des s; dans les
noeuds-fils, donc au développement d’un arbre de régression
dont les valeurs numériques sont les valeurs s,
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Prédiction d’une variable ordinale III

» Le package R rpartScore met en ceuvre les arbres de
décision ordinaux sur la base de CART avec :
i = s " = _ )2
les colts C; = [s;— 5| (split="abs") et ;= (5,—s)
(split="quad")
le colt total de mauvais classement Y/~ |s; — §(x;)| (prune="mc™")
» La fonction rpartScore renvoie un objet de la classe rpart
» NB :le package rpart n’implémente pas les colits de mauvaise
classification car il suppose que le colit C; d'affectation a G; d’'un
individu qui est dans G;ne dépend que de G; et quand on lui
spécifie une matrice de colits comme paramétre loss,il
remplace C; par %C;
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Avantages des arbres de décision 1/2

» lIs fournissent des régles :

explicites

visuelles

qui s’écrivent directement avec les variables d’origine
» Méthode non paramétrique, non perturbée par :

la distribution non linéaire ou non monotone des prédicteurs
par rapport a la variable a expliquer

la colinéarité des prédicteurs
les interactions entre les prédicteurs
les individus hors norme (isolés dans des regles spécifiques)

les fluctuations des prédicteurs non discriminants (I'arbre
sélectionne les plus discriminants)
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Avantages des arbres de décision 2/2

» Beaucoup traitent (sans recodification) des données
hétérogénes (numériques et non numériques, Vvoire
manquantes)

CART traite les valeurs manquantes en remplagant les variables
concernées par des variables équidivisantes

CHAID traite 'ensemble des valeurs manquantes d’une variable comme
une modalité a part ou pouvant étre associée a une autre

éviter d’avoir trop de valeurs manquantes

» Temps de calcul assez rapide
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Limites des arbres de décision 1/2

» Les nceuds du niveau n+[ dépendent fortement de ceux du
niveau n
les variables sont testées séquentiellement et non simultanément

la modification d’une seule variable, si elle est placée prés du sommet de
I'arbre, peut entiérement modifier I'arbre

un arbre détecte des optimums locaux et non globaux
un arbre est sensible au franchissement d’un seuil de scission
manque de robustesse
» Lapprentissage nécessite un nombre suffisant d’individus
pour avoir si possible au moins une trentaine individus par nceud
» Méme avec des variables explicatives continues, la prédiction est
distribuée de fagon discontinue puisqu’elle dépend des feuilles
nombre de valeurs prédites distinctes < nombre de feuilles
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Limites des arbres de décision 2/2

Arbre de décision

» La forme des modeéles obtenus, (X <
n) et (X O {a,b,c...}), conduit a
délimiter des régions rectangulaires
de I'espace des variables qui ne
correspondent pas forcément a la
distribution des individus

v

Les arbres obliques remédient a cet
inconvénient en substituant aux regles
simples de division des nceuds, de la
forme (X < n), des régles sur plusieurs
variables du type (aX + bY+ ... <n)

et permettent un classement au moins |
aussi précis que si I'arbre avait

beaucoup plus de nceuds
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La classification automatique
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Terminologie : de nombreux synonymes

» Classification, ou classification automatique, terme
généralement employé par les auteurs frangais

attention : il est employé dans un autre sens par les anglo-saxons (qui
disent « classification » pour désigner la technique prédictive que les
frangais appellent « classement »)

Segmentation : terme employé en marketing (les « segments
de clientéle ») et assez explicite

Typologie, ou analyse typologique
Clustering : terme anglo-saxon le plus courant

v

v v

» Taxinomie ou taxonomie (biologie, zoologie)
Nosologie (médecine)

» Reconnaissance de forme non supervisée (réseaux de
neurones)

v
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Structure des données a classer

» Soit une matrice rectangulaire dont :
lignes = individus
colonnes = variables

» Cette structure permet de classer individus ou variables

» Soit une matrice carrée de similarités, distances entre :
individus
ou variables (par exemple : la matrice des corrélations)

» Cette structure permet aussi de classer individus ou
variables
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Structure des classes obtenues

» Soit 2 classes sont toujours disjointes : méthodes de
partitionnement :
généralement, le nombre de classes est défini a priori
certaines méthodes permettent de s’affranchir de cette contrainte
(méthodes basées sur la densité comme DBSCAN ou OPTICS)
» Soit 2 classes sont disjointes ou l'une contient [l'autre
méthodes hiérarchiques :
ascendantes (agglomératives : agglomération progressive d'éléments 2 a 2)
descendantes (divisives)
» Soit 2 classes peuvent avoir plusieurs objets en commun (classes
« empiétantes » ou « recouvrantes ») :

analyse « floue », ou chaque objet a une certaine probabilité
d’appartenir a une classe donnée
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Les différentes méthodes de classification

» Méthodes de partitionnement
centres mobiles, k-means et nuées dynamiques
k-modes, k-prototypes, k-représentants (k-medoids)
réseaux de Kohonen
méthodes basées sur la densité
méthode d’agrégation des similarités
» Méthodes hiérarchiques
ascendantes (agglomératives)
basées sur une notion de distance ou de densité
descendantes (divisives)
» Méthodes mixtes

» Analyse floue (fuzzy clustering)
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Applications de la classification

» Marketing : répartir la clientéle en segments dotés chacun d’'une
offre et d’'une communication spécifique — autres utilisations pour :
les ciblages des actions commerciales
I’évaluation du potentiel commercial
I'affectation des clients aux différents types de commerciaux
» Commercial : répartir I'ensemble des magasins d’une enseigne en
établissements homogénes du point de vue type de clientéle, CA,
CA par rayon (selon type d’article), taille du magasin...
Médical : déterminer des groupes de patients susceptibles d’étre
soumis a des protocoles thérapeutiques déterminés, chaque groupe
regroupant tous les patients réagissant identiquement

Sociologie : répartir la population en groupes homogénes du point
de vue sociodémographique, style de vie, opinions, attentes...

v

v
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Exemple de segmentation de clientele
(bancaire)

o
patrimoine -

crédit conso®

faibles revenus

e forts rgvenus
I

Sl (rouge) :peu actifs S4 (orange):seniors

S2 (rose) :jeunes S5 (noir) :aisés

S3 (bleu) :consommateurs S6 (vert) :débiteurs
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Interprétation des classes

v

Statistiques descriptives des classes (comparaison des moyennes
ou des modalités par un test statistique)

v

Analyse factorielle représentant les classes obtenues et les
variables initiales

Classification des variables : variables initiales + indicatrices des
classes obtenues

v

Arbre de décision avec la classe obtenue comme variable a
expliquer

v
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