
Machine Learning Supervisé
avec R

Florian Pothin

Classe : IAS-M2-DA-2

23/10/2024Florian Pothin Machine Learning supervisé avec R Page 1/106

Florian Pothin Machine Learning supervisé avec R Page 2/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 149

Calcul des weights of evidence (WoE) II
� On a créé un data frame contenant les WoE des variables explicatives initiales

> head(credit_woe)

Comptes Duree_credit Historique_credit Objet_credit Montant_credit Epargne Anciennete_emploi

1 -0.8180987 0.4988765 0.73374058 0.1643031 0.2058521 0.7621401 0.29871667

2 -0.4013918 -0.9162907 -0.08786876 0.1643031 -0.5524983 -0.2524534 -0.03210325

3 1.1762632 0.4988765 0.73374058 -0.3109932 0.2058521 -0.2524534 0.29871667

4 -0.8180987 -0.9162907 -0.08786876 0.1643031 -0.5524983 -0.2524534 0.29871667

5 -0.8180987 -0.2035434 -0.08786876 -0.3592005 -0.5524983 -0.2524534 -0.03210325

6 1.1762632 -0.2035434 -0.08786876 -0.3109932 -0.5524983 0.7621401 -0.03210325

Taux_effort Situation_familiale Garanties Anciennete_domicile Biens Age Autres_credits

1 -0.15730029 0.1616414 -0.02797385 -0.001152738 0.46103496 0.1391971 0.1211786

2 0.15546647 -0.2353408 -0.02797385 -0.070150705 0.46103496 -0.5288441 0.1211786

3 0.15546647 0.1616414 -0.02797385 0.054941118 0.46103496 0.1391971 0.1211786

4 0.15546647 0.1616414 0.58778666 -0.001152738 -0.03188189 0.1391971 0.1211786

5 0.06453852 0.1616414 -0.02797385 -0.001152738 -0.58608236 0.1391971 0.1211786

6 0.15546647 0.1616414 -0.02797385 -0.001152738 -0.58608236 0.1391971 0.1211786

Statut_domicile Nb_credits Type_emploi Nb_pers_charge Telephone Cible

1 0.1941560 0.1157105 0.02278003 -0.00281611 0.09863759 0

2 0.1941560 -0.0748775 0.02278003 -0.00281611 -0.06469132 1

3 0.1941560 -0.0748775 0.09716375 0.01540863 -0.06469132 0

4 -0.4302047 -0.0748775 0.02278003 0.01540863 -0.06469132 0

5 -0.4302047 0.1157105 0.02278003 0.01540863 -0.06469132 1

6 -0.4302047 -0.0748775 0.09716375 0.01540863 0.09863759 0

� On crée un échantillon d’apprentissage et un de validation
> train <- credit_woe[id,]

> valid <- credit_woe[-id,]

Florian Pothin Machine Learning supervisé avec R Page 3/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 150

Modèle logit sur WoE I
� On ajuste un modèle logit, qui est plus simple, avec un seul degré de liberté par variable

> logit <- glm(Cible~Comptes+Historique_credit+Duree_credit+Age+Epargne+Garanties+Autres_credits, data=train, family=binomial(link = "logit"))

> summary(logit)

Call:

glm(formula = Cible ~ Comptes + Historique_credit + Duree_credit +

Age + Epargne + Garanties + Autres_credits, family = binomial(link = "logit"),

data = train)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.9421 -0.7566 -0.4523 0.8537 2.6282

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.8672 0.1009 -8.595 < 2e-16 ***

Comptes -0.8984 0.1295 -6.937 4.01e-12 ***

Historique_credit -0.8131 0.1822 -4.462 8.11e-06 ***

Duree_credit -0.9974 0.2225 -4.482 7.38e-06 ***

Age -0.6552 0.3434 -1.908 0.05640 .

Epargne -1.0354 0.2451 -4.224 2.40e-05 ***

Garanties -2.0730 0.7990 -2.595 0.00947 **

Autres_credits -0.8773 0.4038 -2.172 0.02983 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 814.01 on 665 degrees of freedom

Residual deviance: 639.04 on 658 degrees of freedom

AIC: 655.04

Number of Fisher Scoring iterations: 5

Florian Pothin Machine Learning supervisé avec R Page 4/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 151

Modèle logit sur WoE II
� Ce nouveau modèle a une aire sous la courbe ROC plus élevée : 0,7596 

0,7657
> pred.logit <- predict(logit, newdata=valid, type="response")

> auc(valid$Cible, pred.logit, quiet=TRUE)

Area under the curve: 0.7657

� Le nombre de coefficients non significatifs au seuil de 5 % est passé de 3 à 1
� c’est l’âge dont la p-value = 5,64 %
> sum(summary(logit)$coefficients[,4] >= 0.05)

[1] 1

Florian Pothin Machine Learning supervisé avec R Page 5/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 152

Modèle logit sur WoE III
� La simplification du modèle peut permettre de prendre en compte des variables qualitatives

discriminantes dont certaines modalités ont des coefficients non significativement ≠ 0
� c’est le cas de l’objet de crédit dont la modalité « Intérieur » a une p-value = 96,6 %
> logit <-
glm(Cible~Comptes+Historique_credit+Duree_credit+Age+Epargne+Garanties+Autres_credits+Objet_credit,
data=train, family=binomial(link = "logit"))

> summary(logit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.68304 0.64957 -1.052 0.29302

ComptesCC < 0 euros 0.16917 0.23478 0.721 0.47119

ComptesCC > 200 euros -1.36324 0.47385 -2.877 0.00402 **

ComptesPas de compte -1.46689 0.27164 -5.400 6.66e-08 ***

Historique_creditCrédits passés sans retard -1.59679 0.37329 -4.278 1.89e-05 ***

Historique_creditPas de crédits ou en cours sans retard -0.90195 0.33336 -2.706 0.00682 **

Duree_credit(15,36] 0.68982 0.21622 3.190 0.00142 **

Duree_credit(36,Inf] 1.75035 0.37671 4.646 3.38e-06 ***

Age(25,Inf] -0.51624 0.23857 -2.164 0.03047 *

EpargnePas épargne ou > 500 euros -1.12051 0.25616 -4.374 1.22e-05 ***

GarantiesSans garant 1.34003 0.49197 2.724 0.00645 **

Autres_creditsCrédits extérieurs 0.57559 0.24826 2.318 0.02042 *

Objet_creditIntérieur -0.01234 0.28661 -0.043 0.96566

Objet_creditVoiture neuve 0.49118 0.31725 1.548 0.12157

Objet_creditVoiture occasion -0.86957 0.43685 -1.991 0.04653 *

Florian Pothin Machine Learning supervisé avec R Page 6/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 153

Modèle logit sur WoE IV
� Avec les WoE, on a pu ajouter l’objet du crédit au modèle, dont tous les coefficients sont

significativement ≠ 0 (y compris l’âge)
> logit <- glm(Cible~Comptes+Historique_credit+Duree_credit+Age+Epargne+Garanties+Autres_credits+Objet_credit,
data=train, family=binomial(link = "logit"))

> summary(logit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.8646 0.1018 -8.493 < 2e-16 ***

Comptes -0.8792 0.1306 -6.734 1.65e-11 ***

Historique_credit -0.7876 0.1840 -4.280 1.87e-05 ***

Duree_credit -1.0797 0.2279 -4.738 2.16e-06 ***

Age -0.7849 0.3504 -2.240 0.02508 *

Epargne -1.0257 0.2467 -4.157 3.23e-05 ***

Garanties -1.9931 0.8010 -2.488 0.01284 *

Autres_credits -0.8231 0.4061 -2.027 0.04271 *

Objet_credit -0.8988 0.2983 -3.013 0.00258 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 814.01 on 665 degrees of freedom

Residual deviance: 629.63 on 657 degrees of freedom

AIC: 647.63

> pred.logit <- predict(logit, newdata=valid, type="response")

> auc(valid$Cible, pred.logit, quiet=TRUE) # Area under the curve: 0.7657

Area under the curve: 0.7801

� On atteint une AUC = 0,780 plus élevée que celle des modèles précédents

Florian Pothin Machine Learning supervisé avec R Page 7/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 154

Fonction de densité du score
� Fonctions de densité du score sur les bons et mauvais dossiers

> plot(density(pred.logit[valid$Cible==0]), main="Fonction de densité du score",
col="blue", xlim = c(-0.2,1.1), ylim = c(0,3),lwd=2)

> lines(density(pred.logit[valid$Cible==1]), col="red", lty=3, lwd=2)

> legend("topright",c("Cible=0", "Cible=1"), lty=c(1,3), col=c("blue","red"), lwd=2)

� À gauche : modèle sur variables initiales – à droite : modèle sur WoE

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Fonction de densité du score

N = 234 Bandwidth = 0.058

D
en

si
ty

Cible=0
Cible=1

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Fonction de densité du score

N = 234 Bandwidth = 0.05792

D
en

si
ty

Cible=0
Cible=1

Florian Pothin Machine Learning supervisé avec R Page 8/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 155

Seuils de score I
� On peut découper la note de score en tranches

� On constitue généralement deux ou trois tranches de score :
� une tranche moins risquée, dans laquelle il suffit d’effectuer quelques vérifications indispensables (dans les fichiers de la

Banque de France par exemple) et de demander au client les pièces minimales obligatoires

� une tranche intermédiaire, dans laquelle il faut examiner attentivement le dossier et effectuer une analyse standard de risque

� une tranche plus risquée, dans laquelle la demande est, sinon rejetée, du moins transmise à l’échelon hiérarchique supérieur
pour un examen approfondi du dossier

� Nous appliquons le modèle à l'ensemble des données, nous découpons la note de score en vingtiles
(tranches de 5 %), puis nous calculons et affichons les taux d’impayés pour chacun de ces vingtiles
> pred.logit <- predict(logit, newdata=credit2, type="response")

> q <- quantile(pred.logit, seq(0, 1, by=0.05))

> qscore <- cut(pred.logit, q)

> tab <- table(qscore, credit2$Cible)

> ti <- prop.table(tab,1)[,2]

> old <- par(no.readonly = TRUE)

> par(mar = c(7, 4, 2, 0))

> barplot(as.numeric(ti),col=gray(0:length(ti)/length(ti)),

+ names.arg=names(ti), ylab='Taux impayés', ylim=c(0,1),cex.names = 0.8, las=3)

> abline(v=c(7.3,19.3),col="red")

> par(old)

(0
.0

10
5,

0.
03

44
]

(0
.0

34
4,

0.
04

48
]

(0
.0

44
8,

0.
06

52
]

(0
.0

65
2,

0.
08

33
]

(0
.0

83
3,

0.
09

93
]

(0
.0

99
3,

0.
11

]

(0
.1

1,
0.

15
3]

(0
.1

53
,0

.1
76

]

(0
.1

76
,0

.2
01

]

(0
.2

01
,0

.2
42

]

(0
.2

42
,0

.2
72

]

(0
.2

72
,0

.3
29

]

(0
.3

29
,0

.3
63

]

(0
.3

63
,0

.4
27

]

(0
.4

27
,0

.4
92

]

(0
.4

92
,0

.5
27

]

(0
.5

27
,0

.5
73

]

(0
.5

73
,0

.6
41

]

(0
.6

41
,0

.7
36

]

(0
.7

36
,0

.9
18

]

T
a

ux
 im

p
ay

és

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Florian Pothin Machine Learning supervisé avec R Page 9/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 156

Seuils de score II
� Nous pouvons discerner deux seuils assez naturels à 0,11 et 0,527, que nous

utilisons comme limites des tranches du score, et nous obtenons :
� une tranche à faible risque, qui regroupe 29,6 % des dossiers et a un taux d’impayés de 6 %

� une tranche à risque moyen, qui regroupe 50,2 % des dossiers et a un taux d’impayés de 29 %

� une tranche à fort risque, qui regroupe 20,2 % des dossiers et a un taux d’impayés de 67 %

� Nous voyons que le score est très discriminant, puisque le taux d’impayés de
la tranche à fort risque est 11 fois plus élevé que celui de la tranche à faible
risque
> zscore <- recode(pred.logit, "lo:0.11='Faible'; 0.11:0.527='Moyen';
0.527:hi='Fort'")

> tab <- table(zscore,credit2$Cible)

> cbind(prop.table(tab,1), addmargins(tab,2))

0 1 0 1 Sum

Faible 0.9391892 0.06081081 278 18 296

Fort 0.3316832 0.66831683 67 135 202

Moyen 0.7071713 0.29282869 355 147 502

Florian Pothin Machine Learning supervisé avec R Page 10/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 157

Grille de score
� On peut transformer un modèle logistique en une grille de score avec pour chaque

modalité un nombre de points ≥ 0
� d’autant plus élevé que la modalité correspond à un profil plus risqué

� et normalisé pour que chaque dossier ait un nombre total de points compris entre 0 et 100

� La transcription d’un modèle sous forme de « grille de score » est courante en credit scoring

� On parle de scorecard

� Avec des variables qualitatives ou discrétisées, et un coefficient par modalité, il suffit de :

� substituer le logit à la probabilité
4567/*

��4567/* comme valeur du score

� puis normaliser le logit en sorte qu’il soit compris entre 0 et 100 (ou 1000 pour limiter l’effet des
arrondis)

� Dans cette normalisation du logit, les coefficients de la régression logistique sont remplacés
par de nouveaux coefficients, appelés « nombres de points », associés chacun à une modalité

� Le nombre de points est parfaitement corrélé au score logistique en termes de rangs
(corrélation de Spearman = 1) et son pouvoir discriminant est exactement le même,

puisque le classement des individus est conservé par la fonction croissante
48

��48

� Donc l’aire sous la courbe ROC de la grille de score est égale à celle du score logistique

Florian Pothin Machine Learning supervisé avec R Page 11/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 158

Calcul de la grille de score
� Pour chaque variable qualitative ou discrète Xj, on note cjk le coefficient du modèle

associé à la ke modalité, et aj et bj ses coefficients minimum et maximum dans la
régression logistique :
� 9: = min� >:� et ?: = max� >:�

� On calcule ensuite le poids total sur l’ensemble des variables : #B = ∑ ?: − 9::
� À chaque modalité k de Xj est associé un nombre de points égal à : 100 × DE�0 FE

G(
� En présence de variables Xl quantitatives, la grille est plus complexe à établir : le poids

total doit prendre en compte le coefficient �H , le minimum IH et le maximum JH de
chaque variable Xl :

� #B = ∑ ?: − 9:: + ∑ �H JH − IHH

� À une valeur x correspond alors un nombre de points : 100 × �5 K0L5
G(

� La complexité vient de ce que le nombre de points n’est alors pas directement donné
mais doit être calculé pour chaque valeur x

Florian Pothin Machine Learning supervisé avec R Page 12/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 159

Calcul de la grille de score avec R I
� La fonction glm ne fournit pas directement un data frame contenant une colonne pour les

variables (facteurs), une pour leurs modalités (niveaux) et une pour leurs coefficients  nous
devons le créer

� La composante xlevels de l’objet résultat est une liste contenant ses niveaux pour chaque
facteur du modèle
> logit$xlevels

$Comptes

[1] "CC [0-200 euros[" "CC < 0 euros" "CC > 200 euros" "Pas de compte"

$Historique_credit

[1] "Crédits en impayé" "Crédits passés sans retard"
"Pas de crédits ou en cours sans retard"

$Duree_credit

[1] "(0,15]" "(15,36]" "(36,Inf]"

$Age

[1] "(0,25]" "(25,Inf]"

$Epargne

[1] "< 500 euros" "Pas épargne ou > 500 euros"

$Garanties

[1] "Avec garant" "Sans garant"

$Autres_credits

[1] "Aucun crédit extérieur" "Crédits extérieurs"

Florian Pothin Machine Learning supervisé avec R Page 13/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 160

Calcul de la grille de score avec R II
� Avec unlist(logit$xlevels), on concatène dans un vecteur les différents objets de la

liste, les facteurs, dont avec names(unlist(logit$xlevels)) on ne conserve que les
noms
> names(unlist(logit$xlevels))

[1] "Comptes1" "Comptes2" "Comptes3"

[4] "Comptes4" "Historique_credit1" "Historique_credit2"

[7] "Historique_credit3" "Duree_credit1" "Duree_credit2"

[10] "Duree_credit3" "Age1" "Age2"

[13] "Epargne1" "Epargne2" "Garanties1"

[16] "Garanties2" "Autres_credits1" "Autres_credits2"

� On supprime ensuite avec gsub les chiffres suffixant les noms de variables
> VARIABLE=c("", gsub("[0-9]", "", names(unlist(logit$xlevels))))

> VARIABLE

[1] "" "Comptes" "Comptes" "Comptes" "Comptes"

[6] "Historique_credit" "Historique_credit" "Historique_credit" "Duree_credit" "Duree_credit"

[11] "Duree_credit" "Age" "Age" "Epargne" "Epargne"

[16] "Garanties" "Garanties" "Autres_credits" "Autres_credits"

� Extraction des modalités
> MODALITE=c("",unlist(logit$xlevels))

> MODALITE

Comptes1 Comptes2

"" "CC [0-200 euros[" "CC < 0 euros"

Comptes3 Comptes4 Historique_credit1

…

Florian Pothin Machine Learning supervisé avec R Page 14/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 161

Calcul de la grille de score avec R III
� On concatène ensuite variables et modalités dans une expression NOMVAR

> names = data.frame(VARIABLE, MODALITE, NOMVAR=c("(Intercept)",
paste(VARIABLE,MODALITE,sep="")[-1]))

� On récupère ensuite les coefficients du modèle dans un data frame regression que l’on va
fusionner avec le précédent, pour avoir pour chaque coefficient la variable et la modalité qui lui
correspondent
� à noter que la fonction as.numeric ne récupère que les valeurs numériques
> (regression=data.frame(NOMVAR=names(coefficients(logit)),
COEF=as.numeric(coefficients(logit))))

NOMVAR COEF

1 (Intercept) -0.5797981

2 ComptesCC < 0 euros 0.1584002

3 ComptesCC > 200 euros -1.3485320

4 ComptesPas de compte -1.5136834

5 Historique_creditCrédits passés sans retard -1.5873249

6 Historique_creditPas de crédits ou en cours sans retard -0.8970474

7 Duree_credit(15,36] 0.5766696

8 Duree_credit(36,Inf] 1.5115586

9 Age(25,Inf] -0.4507556

10 EpargnePas épargne ou > 500 euros -1.0999919

11 GarantiesSans garant 1.3194937

12 Autres_creditsCrédits extérieurs 0.5587985

Florian Pothin Machine Learning supervisé avec R Page 15/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 162

Calcul de la grille de score avec R IV
� La fusion des deux data frames se fait sur

la colonne qu’elles ont en commun :
NOMVAR
� pour un autre choix, il faudrait spécifier la

clé par un by

� On élimine NOMVAR du résultat par [-1]
(NOMVAR est la première colonne) et
on remplace les valeurs manquantes dans
les coefficients (ceux des modalités de
référence) par 0

� Comme ces coefficients des modalités de
référence n’apparaissent pas dans le data
frame regression, il faut spécifier l’option
all.x=TRUE pour que les lignes
correspondantes soient ajoutées lors du
merge (elles sont présentes dans le data
frame names)

> param = merge(names, regression, all.x=TRUE)[-1]

> param$COEF[is.na(param$COEF)] <- 0

> param

VARIABLE MODALITE COEF

1 -0.5797981

2 Age (0,25] 0.0000000

3 Age (25,Inf] -0.4507556

4 Autres_credits Aucun crédit extérieur 0.0000000

5 Autres_credits Crédits extérieurs 0.5587985

6 Comptes CC [0-200 euros[0.0000000

7 Comptes CC < 0 euros 0.1584002

8 Comptes CC > 200 euros -1.3485320

9 Comptes Pas de compte -1.5136834

10 Duree_credit (0,15] 0.0000000

11 Duree_credit (15,36] 0.5766696

12 Duree_credit (36,Inf] 1.5115586

13 Epargne < 500 euros 0.0000000

14 Epargne Pas épargne ou > 500 euros -1.0999919

15 Garanties Avec garant 0.0000000

16 Garanties Sans garant 1.3194937

17 Historique_credit Crédits en impayé 0.0000000

18 Historique_credit Crédits passés sans retard -1.5873249

19 Historique_credit Pas de crédits ou en cours sans retard -0.8970474

Florian Pothin Machine Learning supervisé avec R Page 16/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 163

Calcul de la grille de score avec R V
� On crée ensuite un data frame qui contient le coefficient minimum de chaque variable, un autre

qui contient le coefficient maximum, puis on les fusionne
> mini=aggregate(data.frame(min = param$COEF), by = list(VARIABLE = param$VARIABLE), min)

> maxi=aggregate(data.frame(max = param$COEF), by = list(VARIABLE = param$VARIABLE), max)

> total = merge(mini,maxi)

> total$diff = total$max - total$min

> total

VARIABLE min max diff

1 -0.5797981 -0.5797981 0.0000000

2 Age -0.4507556 0.0000000 0.4507556

3 Autres_credits 0.0000000 0.5587985 0.5587985

4 Comptes -1.5136834 0.1584002 1.6720836

5 Duree_credit 0.0000000 1.5115586 1.5115586

6 Epargne -1.0999919 0.0000000 1.0999919

7 Garanties 0.0000000 1.3194937 1.3194937

8 Historique_credit -1.5873249 0.0000000 1.5873249

� Puis on calcule le poids total qui servira à normaliser le poids de chaque modalité
> poids_total = sum(total$diff)

> poids_total

[1] 8.200007

Florian Pothin Machine Learning supervisé avec R Page 17/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 164

Calcul de la grille de score avec R VI
� On fusionne ensuite sur la colonne VARIABLE le data frame param avec le data frame mini pour

ajouter en face de chaque modalité le coefficient minimum de la variable de cette modalité
� On calcule la différence entre le coefficient de chaque modalité et le coefficient minimum de la

variable, puis le poids de la modalité
> grille = merge(param, mini, all.x=TRUE)

> grille$delta = grille$COEF - grille$min

> grille$POIDS = round((100*grille$delta) / poids_total)

� On affiche enfin la grille, après suppression de la ligne sans nom de variable, qui correspond à la
constante
> grille[order(grille$VARIABLE,grille$MODALITE)[which(VARIABLE!="")], c("VARIABLE","MODALITE","POIDS")]

VARIABLE MODALITE POIDS

2 Age (0,25] 5

3 Age (25,Inf] 0

4 Autres_credits Aucun crédit extérieur 0

5 Autres_credits Crédits extérieurs 7

6 Comptes CC [0-200 euros[18

7 Comptes CC < 0 euros 20

8 Comptes CC > 200 euros 2

9 Comptes Pas de compte 0

10 Duree_credit (0,15] 0

11 Duree_credit (15,36] 7

12 Duree_credit (36,Inf] 18

13 Epargne < 500 euros 13

14 Epargne Pas épargne ou > 500 euros 0

15 Garanties Avec garant 0

16 Garanties Sans garant 16

17 Historique_credit Crédits en impayé 19

18 Historique_credit Crédits passés sans retard 0

19 Historique_credit Pas de crédits ou en cours sans retard 8

Florian Pothin Machine Learning supervisé avec R Page 18/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 165

Application de la grille de score I
� On transforme la grille de score en une chaîne de caractères que la fonction
parse transforme en une ligne de code R, que la fonction eval évalue,
calculant ainsi le nombre de points de chaque dossier
> card <- function(base,i){

+ noquote(paste0("((",base,"$",grille[i,"VARIABLE"],"=='",grille[i,"MODALITE"],"')*",grille[i,"POIDS"],")"))

+ }

> card("credit2",2)

[1] ((credit2$Age=='(0,25]')*5)

> scorecard <- rbind(sapply(2:nrow(grille), function(x) card("credit2",x)))

> scorecard <- noquote(paste(scorecard, collapse = '+'))

> scorecard

[1] ((credit2$Age=='(0,25]')*5)+((credit2$Age=='(25,Inf]')*0)+((credit2$Autres_credits=='Aucun crédit
extérieur')*0)+ ((credit2$Autres_credits=='Crédits extérieurs')*7)+ …

> pred.grille <- eval(parse(text=scorecard))

� On vérifie que l’on obtient des nombres de points, quasiment parfaitement
corrélés à la note du score logit, la liaison étant donnée par une fonction en S
> head(pred.grille,10)

[1] 36 78 29 59 64 31 31 62 24 54

> cor(pred.grille,pred.logit,method="spearman")

[1] 0.9995231

> plot(pred.grille,pred.logit)

20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

pred.grille

pr
ed

.lo
gi

t

Florian Pothin Machine Learning supervisé avec R Page 19/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 166

Application de la grille de score II
� On peut déterminer des tranches du nombre de points, comme pour la note

de score, et les seuils précédents de 0,11 et 0,527 de la note de score
correspondent ici aux seuils de 37 et 63 points
> plot(pred.grille,pred.logit)

> q <- quantile(pred.grille, seq(0, 1, by=0.05))

> qscore <- cut(pred.grille, q)

> tab <- table(qscore, credit2$Cible)

> ti <- prop.table(tab,1)[,2] # affichage % en ligne

> old <- par(no.readonly = TRUE)

> par(mar = c(7, 4, 2, 0))

> barplot(as.numeric(ti), col=gray(0:length(ti)/length(ti)),

+ names.arg=names(ti), ylab='Taux impayés', ylim=c(0,1), cex.names = 0.8, las=3)

> abline(v=c(7.3,19.3),col="red")

> par(old)

> zscore <- recode(pred.grille, "lo:37='Faible'; 37:63='Moyen'; 63:hi='Fort'")

> tab <- table(zscore,credit2$Cible)

> cbind(prop.table(tab,1), addmargins(tab,2))

0 1 0 1 Sum

Faible 0.9391892 0.06081081 278 18 296

Fort 0.3316832 0.66831683 67 135 202

Moyen 0.7071713 0.29282869 355 147 502

(8
,2

3]

(2
3,

26
]

(2
6,

31
]

(3
1,

34
]

(3
4,

36
]

(3
6,

38
]

(3
8,

42
]

(4
2,

44
]

(4
4,

46
]

(4
6,

49
]

(4
9,

51
]

(5
1,

54
]

(5
4,

56
]

(5
6,

59
]

(5
9,

62
]

(6
2,

64
]

(6
4,

66
.2

]

(6
6.

2,
69

]

(6
9,

75
]

(7
5,

91
]

T
au

x
im

pa
yé

s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Florian Pothin Machine Learning supervisé avec R Page 20/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 167

Sélection pas à pas I
� Le package stats contient une fonction step qui réalise la sélection pas à pas des variables en cherchant à

minimiser un critère pénalisé du type AIC ou BIC

� La fonction step est associée à la fonction glm et peut donc être utilisée pour n’importe quel modèle linéaire
généralisé, comme par exemple un modèle de régression linéaire ou de régression logistique

� La fonction step peut être utilisée pour la sélection ascendante (forward), descendante (backward), ou
stepwise (both) (sélection ascendante avec suppression possible d’une variable déjà entrée dans le modèle)

� Pour une sélection pas à pas ascendante, nous partons du modèle minimal
> logit <- glm(Cible~1, data=train, family=binomial(link = "logit"))
> summary(logit)

Call:
glm(formula = Cible ~ 1, family = binomial(link = "logit"), data = train)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.8451 -0.8451 -0.8451 1.5511 1.5511

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.84587 0.08453 -10.01 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 814.01 on 665 degrees of freedom
Residual deviance: 814.01 on 665 degrees of freedom
AIC: 816.01

Florian Pothin Machine Learning supervisé avec R Page 21/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 168

Sélection pas à pas II
� La fonction step permet de spécifier le modèle initial, la direction ascendante de la sélection, l’affichage

(trace) des étapes de la sélection, la plage (scope) de modèles examinée, et le multiple k du nombre d de
degrés de liberté dans la pénalisation ajoutée à la déviance –2 log(vraisemblance)

� Cette pénalisation vaut 2.d pour le critère d’Akaïké (AIC) et log(effectif).d pour le critère de Schwartz (BIC), et
on peut spécifier k = 2 ou k = log(nombre de lignes du data frame), ou encore d’autres valeurs

� Ici on a choisi le BIC (mais dans ses sorties la fonction step écrit AIC dans tous les cas)
> predicteurs <- -grep('(Cle|Cible)', names(train))
> formule <- as.formula(paste("y ~ ", paste(names(train[,predicteurs]), collapse="+")))
> formule
y ~ Comptes + Duree_credit + Historique_credit + Objet_credit +

Montant_credit + Epargne + Anciennete_emploi + Taux_effort +
Situation_familiale + Garanties + Anciennete_domicile + Biens +
Age + Autres_credits + Statut_domicile + Nb_credits + Type_emploi +
Nb_pers_charge + Telephone

� On teste les modèles compris entre le modèle initial (= constante) et le modèle contenant tous les prédicteurs

� Le BIC du modèle réduit à la constante vaut 820,51, et introduire la variable « Comptes » dans le modèle fait
baisser le BIC à 743,90
> selection <- step(logit, direction="forward", trace=TRUE, k = log(nrow(train)),
scope=list(upper=formule))

Start: AIC=820.51
Cible ~ 1

Df Deviance AIC
+ Comptes 3 717.90 743.90
+ Historique_credit 2 769.66 789.16
…
+ Taux_effort 3 812.35 838.36
+ Type_emploi 3 812.88 838.88

Florian Pothin Machine Learning supervisé avec R Page 22/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 169

Sélection pas à pas III
� Le BIC du modèle contenant la constante et la variable « comptes » vaut 743,90 et c’est ensuite l’historique de

crédit qui fait le plus baisser le BIC, à 728,98

� Les lignes au-dessus de <none> correspondent aux variables susceptibles de procurer un BIC inférieur à celui
du modèle atteint à cette étape, et donc d’être intégrées au modèle

� Quant à la déviance = 717,90 elle ne peut bien sûr que baisser à chaque ajout d’une variable dans le modèle
Step: AIC=743.9
Cible ~ Comptes

Df Deviance AIC
+ Historique_credit 2 689.97 728.98
+ Duree_credit 2 694.31 733.31
+ Epargne 1 701.77 734.28
+ Montant_credit 1 705.04 737.55
+ Autres_credits 1 710.36 742.86
<none> 717.90 743.90
+ Garanties 1 711.41 743.92
+ Biens 2 707.53 746.53
+ Age 1 715.54 748.04
+ Statut_domicile 1 715.76 748.27
+ Nb_pers_charge 1 716.54 749.04
+ Situation_familiale 2 710.66 749.66
+ Telephone 1 717.89 750.40
+ Anciennete_emploi 2 711.56 750.56
+ Objet_credit 3 708.80 754.31
+ Anciennete_domicile 3 708.82 754.33
+ Nb_credits 3 713.65 759.16
+ Taux_effort 3 714.41 759.92
+ Type_emploi 3 717.49 763.00
…

Florian Pothin Machine Learning supervisé avec R Page 23/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 170

Sélection pas à pas IV
� On s’arrête quand le BIC ne diminue

� Quand le modèle contient déjà les variables « comptes », « historique de crédit », « épargne » et
« durée de crédit », le BIC vaut 710,7

� On voit que la variable « Garanties » peut faire baisser le BIC à 709,80 mais que l’ajout d’une
variable supplémentaire (« autres crédits ») fait remonter le BIC à 713,15
Step: AIC=710.7

Cible ~ Comptes + Historique_credit + Epargne + Duree_credit

Df Deviance AIC

+ Garanties 1 644.79 709.80

<none> 652.19 710.70

+ Autres_credits 1 648.14 713.15

+ Age 1 648.94 713.96

+ Montant_credit 1 650.93 715.94

+ Situation_familiale 2 644.47 715.99

+ Nb_pers_charge 1 651.12 716.13

+ Statut_domicile 1 651.90 716.91

+ Telephone 1 652.01 717.03

+ Anciennete_emploi 2 647.55 719.06

+ Objet_credit 3 641.20 719.21

+ Biens 2 649.10 720.62

+ Anciennete_domicile 3 643.53 721.54

+ Taux_effort 3 648.36 726.38

+ Nb_credits 3 649.07 727.09

+ Type_emploi 3 652.15 730.16

Florian Pothin Machine Learning supervisé avec R Page 24/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 171

Sélection pas à pas V
� On a ajouté les garanties au modèle et la fonction s’arrête car il n’est plus possible de diminuer le BIC

Step: AIC=709.8

Cible ~ Comptes + Historique_credit + Epargne + Duree_credit + Garanties

Df Deviance AIC

<none> 644.79 709.80

+ Autres_credits 1 639.87 711.39

+ Age 1 641.30 712.81

+ Nb_pers_charge 1 643.59 715.10

+ Situation_familiale 2 637.17 715.18

+ Montant_credit 1 643.84 715.35

+ Telephone 1 644.28 715.79

+ Statut_domicile 1 644.60 716.12

+ Objet_credit 3 633.81 718.32

+ Anciennete_emploi 2 640.61 718.63

+ Anciennete_domicile 3 634.93 719.45

+ Biens 2 643.21 721.23

+ Taux_effort 3 641.24 725.76

+ Nb_credits 3 641.43 725.95

+ Type_emploi 3 644.72 729.23

� Le critère BIC nous a conduit à sélectionner pas à pas 5 variables
� Le critère AIC impose une pénalisation moins sévère et nous conduit à sélectionner 12 variables
� On peut aussi procéder à une sélection descendante :

� le modèle initial contient toutes les variables
� on n’a pas besoin de spécifier scope=list(upper=formule)) puisque le modèle maximal est le modèle initial, mais

on peut spécifier un modèle minimal (option scope=list(lower=~Comptes+…) pour contraindre certaines variables à
apparaître dans le modèle

> logit <- glm(Cible~., data=train, family=binomial(link = "logit"))

> selection <- step(logit, direction="backward", trace=TRUE, k = log(nrow(train)))

Florian Pothin Machine Learning supervisé avec R Page 25/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 172

Test de toutes les combinaisons de variables
� R permet de tester facilement tout un ensemble de combinaisons de variables (les calculs peuvent être très longs !)

� Ensemble des combinaisons de variables explicatives (ici : combinaisons de 1 à 5 variables)
> pos <- 20 # position variable à expliquer

> combis <- unlist(sapply(1:5, function(x) apply(combn(names(train)[-pos], x), 2, paste, collapse = " + ")))

� Calcul de l’ensemble des modèles logit s’appuyant sur ces combinaisons de variables (peut être très long)
> lst.model <- lapply(combis, function(x) glm(as.formula(paste("Cible ~", x)), data = train, family=binomial))

� Nombre de modèles
> length(lst.model)

[1] 16663

� Application de la liste des modèles à un échantillon de validation
> lst.pred <- lapply(lst.model, function(x) {predict(x, newdata=valid)})

� Calcul de l’aire sous la courbe ROC de ces modèles
> AUC <- sapply(lst.pred, function(x) {auc(valid$Cible,x,quiet=TRUE)})

> resultats <- data.frame(combis, AUC)

� Affichage des aires sous la courbe ROC les plus élevées et des combinaisons correspondantes
> head(resultats[order(resultats[,2], decreasing=T),])

combis AUC

6339 Comptes + Objet_credit + Montant_credit + Biens + Age 0.7713889

5723 Comptes + Historique_credit + Objet_credit + Montant_credit + Age 0.7713675

5725 Comptes + Historique_credit + Objet_credit + Montant_credit + Statut_domicile 0.7693376

5722 Comptes + Historique_credit + Objet_credit + Montant_credit + Biens 0.7691453

5036 Comptes + Duree_credit + Historique_credit + Objet_credit + Montant_credit 0.7689103

6360 Comptes + Objet_credit + Montant_credit + Statut_domicile + Telephone 0.7685684

Florian Pothin Machine Learning supervisé avec R Page 26/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 173

Régression clusterwise

Florian Pothin Machine Learning supervisé avec R Page 27/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 174

Le clustering de modèles
� Régression clusterwise : méthode de recherche simultanée des classes

et des modèles de chaque classe
� C’est un modèle des moindres carrés ordinaires dans lequel on

cherche à minimiser la somme des carrés des résidus
suivante : ∑ ∑ 1�(M) "! − N� + �� ! OP�&�%!&�
� où 1�(M) est la fonction indicatrice de la ke classe

� On peut y parvenir par application de l’algorithme suivant :
� étape 1 : à partir d’une partition initiale, on estime séparément k modèles

de régression
� étape 2 : chaque observation est affectée à la classe et au modèle

minimisant le carré du résidu
� étape 3 : une fois toutes les observations reclassées, on a une nouvelle

partition et on revient à l’étape 2
� Il peut arriver que l’on obtienne des classes de taille < nombre de

variables  recourir à une régression pénalisée du type ridge
� Package R : flexmix

Florian Pothin Machine Learning supervisé avec R Page 28/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 175

Exemple de régression clusterwise I
> set.seed(2)
> x1 <- rnorm(100)
> set.seed(3)
> y1 <- x1 + rnorm(100, sd=0.5)
> set.seed(5)
> y2 <- - x1 + rnorm(100, sd=0.5)
> x <- c(x1,x1)
> y <- c(y1,y2)
> modele <- lm(y ~ x)
> summary(modele)

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-2.81971 -0.86755 0.02945 0.94792 2.54697

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.010835 0.083549 0.130 0.897
x 0.005453 0.072350 0.075 0.940

Residual standard error: 1.181 on 198 degrees of freedom
Multiple R-squared: 2.869e-05, Adjusted R-squared: -0.005022
F-statistic: 0.00568 on 1 and 198 DF, p-value: 0.94

� Nous avons obtenu une droite de régression de pente quasiment nulle

Florian Pothin Machine Learning supervisé avec R Page 29/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 176

Exemple de régression clusterwise II
� Nous ajustons une régression clusterwise en spécifiant l’existence de 2 classes

> library(flexmix)
> clw <- flexmix(y ~ x, k=2)
> summary(clw)

Call:
flexmix(formula = y ~ x, k = 2)

prior size post>0 ratio
Comp.1 0.501 101 156 0.647
Comp.2 0.499 99 159 0.623

'log Lik.' -218.5194 (df=7)
AIC: 451.0388 BIC: 474.127

� Les deux classes détectées sont presque de même taille
� Nous retrouvons les pentes correspondant aux deux classes que nous avons créées : l’une proche de

+1 et l’autre proche de –1
> summary(refit(clw))
$Comp.1

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.010514 0.048656 -0.2161 0.8289
x 0.941763 0.038669 24.3547 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

$Comp.2
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.013144 0.050655 0.2595 0.7953
x -0.941999 0.040461 -23.2815 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Florian Pothin Machine Learning supervisé avec R Page 30/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 177

Lien avec la régression logistique

� Une approche courante consiste à se placer dans le cadre des modèles de
mélanges et à rechercher l’estimateur du maximum de vraisemblance

� Les coefficients β de la régression logistique s’obtiennent à partir des
fonctions de densité conditionnelles fβ en maximisant la log-vraisemblance
calculée sur des observations (x1,y1), (x2,y2), …, (xn,yn) : ∑ log T� "! !⁄%!&�

� Dans un modèle clusterwise, la fonction de densité conditionnelle est une
somme de plusieurs fonctions ∑ -�T��

P�&� , où -� est la probabilité a priori de
la classe k, et il faut estimer les paramètres -� et �� en maximisant la log-
vraisemblance : ∑ log ∑ -�T�� "! !⁄P�&�%!&�

� La recherche directe des paramètres (-�, …, -P, ��, … , �P) maximisant cette
fonction devient vite très complexe, même en présence de deux classes
seulement, car on ne sait pas à quelle classe appartient chaque individu

� L’estimation de ces paramètres est toutefois rendue possible par l’algorithme
EM (expectation-maximization) de Dempster et al.

Florian Pothin Machine Learning supervisé avec R Page 31/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 178

Les arbres de décision

Florian Pothin Machine Learning supervisé avec R Page 32/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 179

Principe des arbres de décision
� Les arbres de décision sont une méthode de classification

hiérarchique descendante supervisée
� Elle est appliquée itérativement pour scinder chaque ensemble

d’individus en deux (ou plus de deux) sous-ensembles, selon un
critère le plus lié possible à la variable à expliquer

� L’ensemble initial est constitué de l’ensemble des individus
(« racine »), scindé en plusieurs sous-ensembles (« nœuds ») qui
seront chacun scindés (en « nœuds-fils »), etc.

� Les nœuds terminaux sont les « feuilles » et chaque chemin entre la
racine et une feuille est un ensemble de conditions = une règle

� Dans un arbre de régression, la moyenne de la variable à expliquer
doit être la plus différente possible d’un nœud à l’autre

� Dans un arbre de classement, la probabilité d’appartenance à l’une
des classes doit être la plus différente possible d’un nœud à l’autre

Florian Pothin Machine Learning supervisé avec R Page 33/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 180

Arbres de régression
� La variable à expliquer Y est continue
� Les arbres de régression sont une alternative à la régression

linéaire multiple
� Principe :

� la variable Y doit avoir une variance plus faible dans les nœuds fils
(modalités de la variable explicative créées par la scission) que dans
le nœud père, la baisse de variance étant la plus importante possible

�  la variable Y doit avoir une moyenne la plus distincte possible d’un
nœud fils à un autre

� On teste l’hypothèse nulle que la moyenne de la variable à
expliquer est la même dans chaque nœud fils. On choisit la
variable explicative, et la scission, pour laquelle la probabilité p
associée au test de Fisher-Snedecor est minimale, et on scinde
le nœud si p est inférieure au seuil fixé permettant de rejeter
l’hypothèse nulle

Florian Pothin Machine Learning supervisé avec R Page 34/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 181

Noeud 0

Moyenne 3250,141

Ecart type 4330,307

n 163

% 100,0

Prévisions 3250,141

ENERG
Valeur p aj.= 0,000, F= 122,386,

ddl1= 2, ddl2= 160

PNB

Noeud 1

Moyenne 554,319

Ecart type 479,405

n 69

% 42,3

Prévisions 554,319

ESPER
Valeur p aj.= 0,000, F= 29,878,

ddl1= 1, ddl2= 67

< = 19

Noeud 2

Moyenne 2407,358

Ecart type 2824,902

n 53

% 32,5

Prévisions 2407,358

(19, 65]; < manquantes>

Noeud 3

Moyenne 8876,463

Ecart type 4388,009

n 41

% 25,2

Prévisions 8876,463

> 65

Noeud 4

Moyenne 322,513

Ecart type 179,728

n 39

% 23,9

Prévisions 322,513

< = 53

Noeud 5

Moyenne 855,667

Ecart type 574,784

n 30

% 18,4

Prévisions 855,667

> 53

Arbre de régression
Ce sont la
consommation
d’énergie et
l’espérance de vie
qui expliquent le
mieux le PNB par
habitant (ou
l’inverse !)

Florian Pothin Machine Learning supervisé avec R Page 35/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 182

Arbre de classement

Catégorie % n
1 32,99 511
0 67,01 1038
Total (100,00) 1549

Noeud 0

Catégorie % n
1 73,93 258
0 26,07 91
Total (22,53) 349

Noeud 2

Catégorie % n
1 45,59 62
0 54,41 74
Total (8,78) 136

Noeud 7
Catégorie % n
1 87,00 87
0 13,00 13
Total (6,46) 100

Noeud 6
Catégorie % n
1 96,46 109
0 3,54 4
Total (7,30) 113

Noeud 5

Catégorie % n
1 21,08 253
0 78,92 947
Total (77,47) 1200

Noeud 1

SURV (Echantillon d'apprentissage)

SEX
Prob. ajustée - valeur=0,0000, Khi-deux=341,5082, ddl=1

0

CLASS
Prob. ajustée - valeur=0,0000, Khi-deux=95,2936, ddl=2

32;01

1

À bord du Titanic

Florian Pothin Machine Learning supervisé avec R Page 36/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 183

Classement ou régression par arbre

� Détermination pour chaque nœud de l’ensemble des
divisions possibles (variables et conditions sur ces
variables)

� Application d'un critère (C1) permettant de sélectionner
la meilleure division possible du nœud

� Application d’un (ou plusieurs) critère(s) d'arrêt (C2) des
divisions

� Application d’une règle d'affectation de chaque nœud
terminal
� à une classe de Y si Y est qualitative
� à une valeur de Y si Y est quantitative
�  prédiction de Y pour chaque individu

� Estimation de l’erreur, du coût associé à l'arbre

Florian Pothin Machine Learning supervisé avec R Page 37/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 184

Critères d’arrêt

� Le critère d’arrêt (C2) peut combiner plusieurs règles :
� la profondeur de l’arbre a atteint une limite fixée
� ou le nombre de feuilles a atteint un maximum fixé
� ou l’effectif de chaque nœud est inférieur à une valeur fixée en

deçà de laquelle on estime qu’il ne faut plus diviser un nœud
� ou la division ultérieure de tout nœud provoquerait la naissance

d’un fils d’effectif inférieur à une valeur fixée
� ou la qualité de l’arbre est suffisante (et en tout cas si tous les

individus de chaque feuille sont dans la même classe, en
classement)

� ou la qualité de l’arbre n’augmente plus de façon significative

� Le critère de qualité dépend du type d’arbre
� exemple : la pureté dans l’arbre CART

Florian Pothin Machine Learning supervisé avec R Page 38/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 185

Critères de choix de scission d’un nœud

� Le critère du χ2

� lorsque les variables explicatives sont qualitatives
� utilisé dans les arbres CHAID et QUEST

� Les critères basés sur une fonction d’impureté
� pour tous types de variables explicatives
� l’indice de Gini est utilisé dans l’arbre CART
� l’indice Twoing est utilisé dans l’arbre CART lorsque la variable à

expliquer a ≥ 3 modalités
� l’indice Twoing ordonné est utilisé quand la variable à expliquer est

ordinale
� l’entropie est utilisée dans les arbres CART, C4.5 et C5.0
� plus les classes sont uniformément distribuées dans un nœud, plus la

fonction d’impureté est élevée ; plus le nœud est pur, plus elle est
basse

Florian Pothin Machine Learning supervisé avec R Page 39/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 186

Arbres de classement

� La variable à expliquer Y est une variable nominale (ou ordinale) à k
modalités, définissant k groupes d’individus Gi d’effectifs ni

� On peut considérer que les probabilités a priori P(Gi) sont :
� toutes égales
� ou égales aux fréquences empiriques ni/n
� ou fixées a priori par une connaissance experte

� Pour tout nœud t, soient P(t/Gi) la probabilité d’être dans le nœud t si
on est dans la ie classe, P(t) la probabilité du nœud et P(Gi/t) la
probabilité d’être dans Gi si on est dans t

� On a : P(Gi/t)P(t) = P(t/Gi)P(Gi) (formule de Bayes)
� Dans le 2e cas ci-dessus (P(Gi) = ni/n), on a :

� P(Gi/t) = (ni/n)P(t/Gi)/P(t) = (ni/n)(ni(t)/ni)/(n(t)/n) = ni(t)/n(t)
� proportion d’individus du nœud t qui sont dans Gi = notée plus simplement fi
� c’est le cas le plus fréquent, dans lequel nous nous placerons pour la suite

Florian Pothin Machine Learning supervisé avec R Page 40/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 187

Prédiction dans un arbre de classement

� Affectation d’un nœud terminal t au groupe Gi pour lequel P(Gi/t) est
maximale
� quand P(Gi/t) = ni(t)/n(t)  affectation du nœud t au groupe de plus grand

effectif dans t

� Affectation d’un individu :
� d’abord à un nœud t, en fonction des valeurs de ses variables explicatives

� ensuite au Gi auquel est affecté le nœud t

� avec une prédiction P(Gi/t) (la même pour tous les individus du nœud)

� On peut introduire des coûts de mauvais classement : Cij = coût
d’affectation d’un individu à Gi alors qu’il est dans Gj

� on a Cii = 0 et le cas le plus fréquent est celui où Cij = 1 pour tous i ≠ j

� Le coût d’affectation du nœud t à Gi est ∑ W!:X Y:/B�:&�
� On affecte alors t au Gi de coût minimal et non au P(Gi/t) maximal

Florian Pothin Machine Learning supervisé avec R Page 41/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 188

Fonction d’impureté

� Une fonction d’impureté est une fonction :
� positive, concave, symétrique (elle ne dépend que de la proportion dans

laquelle est présente chaque classe dans le nœud, et ne varie pas si l’on
permute les classes par rapport aux proportions)

� minimale lorsque tous les individus qui composent le nœud appartiennent
à la même classe

� maximale lorsque toutes les classes sont présentes dans la même
proportion dans le nœud

� Principales fonctions d’impureté :
� indice de diversité de Gini
� entropie
� plus petite proportion d’une classe dans un nœud (fonction non dérivable

)

Florian Pothin Machine Learning supervisé avec R Page 42/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 189

Indice de diversité de Gini

� Indice de Gini d’un nœud = 1 – Σifi² = Σi≠j fifj = Σi≠j P(Gi/t)P(Gj/t)
� où les fi = ni(t)/n(t), i = 1 à p, sont les fréquences relatives dans le nœud des p

classes à prédire (variable à expliquer), égales à P(Gi/t) dans le cas le plus
fréquent

� = probabilité que 2 individus, choisis aléatoirement dans un nœud,
appartiennent à 2 classes différentes

� Plus les classes sont uniformément distribuées dans un nœud,
plus l’indice de Gini est élevé ; plus le nœud est pur, plus l’indice
de Gini est bas
� avec 2 classes, l’indice va de 0 (nœud pur) à 0,5 (mélange maximal) – avec 3

classes, l’indice va de 0 à 2/3

� Chaque scission en p nœuds fils (d’effectifs n1, n2 … np) doit
provoquer la plus grande hausse de la pureté, donc la plus
grande baisse de l’indice de Gini. Autrement dit, il faut
minimiser : Gini fils = ∑ %/

% Gini(M4 fils)G
!&�

� Par concavité, on a toujours Gini(père) ≥ Gini(fils)

Florian Pothin Machine Learning supervisé avec R Page 43/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 190

Mécanisme de scission des nœuds avec Gini

Article Prix Achat

1 125 N

2 100 N

3 70 N

4 120 N

5 95 O

6 60 N

7 220 N

8 85 O

9 75 N

10 90 O

(exemple :
catalogue
avec prix
des articles
et achat
O/N)

Florian Pothin Machine Learning supervisé avec R Page 44/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 191

Mécanisme de scission des nœuds avec Gini

Achat N N N O O O N N N N

Prix 60 70 75 85 90 95 100 120 125 220

Seuil 55 65 72,5 80 87,5 92,5 97,5 110 122,5 172,5 230

≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ >

O 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

N 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0,420 0,400 0,375 0,343 0,417 0,400 0,300 0,343 0,375 0,400 0,420

6/10.(1-0,5²-0,5²)+4/10.(1-0²-1²)=6/10*0,5=0,3 À noter tous les indices ≥ 0,42 indice de la racine

Florian Pothin Machine Learning supervisé avec R Page 45/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 192

Entropie de Shannon

� Entropie (ou « information » ou « déviance ») d’un nœud t

= – Σi fi.log(fi) = – Σi P(Gi/t)log(P(Gi/t))
� où les fi, i = 1 à p, sont les fréquences relatives dans le nœud des p classes

à prédire

� Plus les classes sont uniformément distribuées dans un nœud,
plus l’entropie est élevée ; plus le nœud est pur, plus l’entropie
est basse
� elle vaut 0 lorsque le nœud ne contient qu’une seule classe

� C’est une fonction d’impureté comme l’indice de Gini et elle
produit des scissions peu différentes de l’indice de Gini

� Comme précédemment, il faut minimiser l’entropie dans les
nœuds-fils

Florian Pothin Machine Learning supervisé avec R Page 46/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 193

Comparaison des fonctions d’impureté

� L’entropie est toujours plus grande que l’indice de Gini, et leurs
valeurs maximales sont 1-(1/k) pour l’indice de Gini et –log(–
1/k) pour l’entropie (pour k classes)

� Elles valent par exemple 0,5 et environ 0,69 pour k = 2

� On peut mettre à l’échelle ces deux courbes f(f1) en multipliant
l’entropie par [1-(1/k)] / [–log(–1/k)]

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,2 0,4 0,6 0,8 1

Indice de Gini

Entropie

Min

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 0,2 0,4 0,6 0,8 1

Indice de Gini

Entropie

Min

Florian Pothin Machine Learning supervisé avec R Page 47/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 194

Utilité de la concavité

� La concavité d’une fonction f  si A et B sont deux points du graphe G(f) de
la fonction, le segment [A,B] est entièrement situé sous G(f)

� T B + 1 − B " ≥ BT + 1 − B T " , B ∈ [0,1]
� La concavité assure la diminution systématique de l’impureté lorsque l’on

scinde un nœud père en plusieurs nœuds-fils
� Autrement dit, on a toujours (sachant que n = ng + nd) :

Gini père ≥ e f!
f YMfM M4 TMgh

G

!&�

YMfM f�
f T�

� + fi
f T�i ≥ f�

f YMfM T�
� + fi

f YMfM T�i

� La diminution systématique de l’impureté garantit la convergence du
processus de scission successive des nœuds

� Il est toutefois prévisible que, comme pour tout modèle trop complexe, un
arbre de profondeur maximale ne puisse que conduire au sur-apprentissage
 nécessité d’une stratégie de limitation de la complexité (voir plus loin)

Florian Pothin Machine Learning supervisé avec R Page 48/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 195

Choix d’une fonction d’impureté 1/2

� Pour l’optimisation, préférer une fonction dérivable comme l’indice
de Gini ou l’entropie

� Ils décroissent plus fortement que le taux d’erreur quand les nœuds
sont plus purs

� Exemple de 1000 individus dont 500 appartiennent à chaque classe,
avec un arbre T1 répartissant ces individus en (400,100) dans un
nœud et (100,400) dans un autre, et un arbre T2 répartissant ces
individus en (315,25) dans un nœud et (185,475) dans un autre

� T2 est préférable car il conduit à un premier nœud très pur
� On peut vérifier que l’on a :

� indice de Gini = 0,32, entropie = 0,50 et taux d’erreur = 0,20 pour T1
� indice de Gini = 0,31, entropie = 0,48 et taux d’erreur = 0,21 pour T2

� Le critère du taux d’erreur conduirait donc à retenir T1 alors que
l’arbre T2 que nous préférons est retenu par l’indice de Gini et
l’entropie

Florian Pothin Machine Learning supervisé avec R Page 49/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 196

Choix d’une fonction d’impureté 2/2

� Discussions sur le choix de l’indice de Gini ou l’entropie

� Breiman, Friedman, Olshen et Stone préfèrent l’indice de Gini
� tout en reconnaissant que le choix d’un critère ou d’un autre influe

peu sur l’arbre produit, et moins en tout cas que la stratégie d’élagage

� Mais l’indice de Gini :
� est simple et donc rapide à calculer (un simple produit 2f1f2 dans le

cas de deux classes)

� permet d’intégrer naturellement des coûts Cij de mauvais classement
dans la formule ∑ W!:T!T:!j:

� limite plus que l’entropie l’apparition de « end cut splits » (scissions
déséquilibrées où l’un des nœuds fils est très pur mais très petit)
� car l’entropie décroît plus fortement que l’indice de Gini quand les nœuds

sont plus purs (voir précédemment)

Florian Pothin Machine Learning supervisé avec R Page 50/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 197

Cas des arbres de régression

� Impureté = variance(Y) dans le nœud : l’objectif de baisse de
l’impureté se traduit en objectif de variance la plus faible
possible dans les nœuds-fils (variance intra-classe)

� Réduction de l’impureté = variance totale (nœud-père) –
variance intra-classe (intra nœuds-fils) = variance inter-classe
(inter-nœuds fils)

� Prédiction : les observations d'un nœud terminal se voient
affecter comme valeur de Y la moyenne dans le nœud

� Coût (erreur) d’un nœud t = variance de Y dans t = impureté(t)

� On peut calculer la somme des coûts dans les nœuds (pondérés
par les effectifs), et la normaliser par la variance de Y dans la
racine

Florian Pothin Machine Learning supervisé avec R Page 51/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 198

Les principaux arbres de décision 1/2

� CHAID (CHi-Square Automation Interaction Detection)
� utilise le test du χ2 pour déterminer la variable la plus significative

pour chaque scission et le découpage de ses modalités

� adapté à l’étude des variables explicatives discrètes (les variables
explicatives continues peuvent être discrétisées)

� QUEST
� variable à expliquer nominale

� utilise le test du χ2 comme CHAID mais pour produire des
scissions binaires comme CART

Florian Pothin Machine Learning supervisé avec R Page 52/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 199

Les principaux arbres de décision 2/2

� CART (Classification and Regression Tree)
• cherche à maximiser la pureté des nœuds

• adapté à l’étude de tout type de variables explicatives

• dispositif d’élagage

• utilisation de variables équidivisantes pour gérer les valeurs manquantes

• généralement binaire (chaque nœud a au plus deux nœud-fils)

� C5.0
• cherche à maximiser le gain d’information réalisé en affectant chaque

individu à une branche de l’arbre

• adapté à l’étude de tout type de variables explicatives

• transformation de l’arbre en règles qui permet une simplification par
suppression des règles redondantes

Florian Pothin Machine Learning supervisé avec R Page 53/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 200

Arbre CHAID – Algorithme 1/2

� Cet arbre est de conception plus ancienne (principe : 1975,
Hartigan ; algorithme : 1980, Kass)

� Il traite directement les variables explicatives discrètes ou
qualitatives, et discrétise automatiquement les variables
explicatives continues

� La variable à expliquer est qualitative à k modalités
� Utilise plusieurs fois la statistique du χ2 :

1. On construit pour chaque prédicteur Xi, le tableau de
contingence Xi x Y et on effectue les étapes 2 et 3

2. On sélectionne la paire de modalités de Xi dont le sous-tableau
(2 x k) a le plus petit χ². Si ce χ² n’est pas significatif (p-value > à
un seuil fixé), on fusionne les 2 modalités et on répète cette
étape jusqu’à ce que toutes les paires de modalités (simples ou
composées) aient un χ² significatif ou jusqu’à ce qu’il n’y ait plus
qu’une seule modalité. Si Xi est ordinale ou quantitative, seules
sont considérées les paires de modalités adjacentes

Florian Pothin Machine Learning supervisé avec R Page 54/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 201

Arbre CHAID – Algorithme 2/2
3. Éventuellement, pour chaque modalité composée d’au moins 3

modalités originales, on détermine la division binaire au χ² le plus
grand. S’il est significatif, on effectue cette division (même si le χ² de
(A,B) xY n’était pas significatif, ni celui de (A∪B,C) xY, le χ² de
(A,B∪C) xY pourrait être significatif)

4. On calcule la significativité (p-value associée au χ²) de chaque
prédicteur Xi dont les modalités ont été précédemment regroupées et
on retient le prédicteur le plus significatif. Si la p-value du χ² est
inférieure au seuil choisi, on peut diviser le nœud en autant de nœuds-
fils qu’il y a de modalités après regroupement. Si la p-value dépasse le
seuil spécifié, le nœud n’est pas divisé

� Ajustement de Bonferroni
� Lors du calcul de la significativité de tous les prédicteurs (étape 4),

on peut multiplier la valeur de la probabilité du χ² par le coefficient
de Bonferroni, qui est le nombre de possibilités de regrouper les m
modalités d’un prédicteur en g groupes (1 ≤ g ≤ m)

� Ce calcul permet d’éviter la surévaluation de la significativité des
variables à modalités multiples

Florian Pothin Machine Learning supervisé avec R Page 55/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 202

Arbre CHAID – Caractéristiques

� CHAID traite l’ensemble des valeurs manquantes comme une
seule catégorie (qu’il fusionne éventuellement avec une autre)
� pas d’utilisation de variables équidivisantes

� Il n’est pas binaire et produit des arbres souvent plus larges que
profonds
� utile pour la discrétisation de variables continues

� Le nombre de nœuds fils dépend des seuils fixés pour le test du
χ²

� Pas de dispositif d’élagage : la construction de l’arbre s’achève
dès que les critères d’arrêt sont rencontrés

� R : package CHAID sur R-Forge
> install.packages("CHAID", repos="http://R-Forge.R-
project.org")

> library("CHAID")

Florian Pothin Machine Learning supervisé avec R Page 56/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 203

Discrétisation avec CHAID 1/4

� Supposons que nous voulions prédire une variable cible à l’aide
de certaines variables explicatives, dont l’âge, et que nous
voulions découper l’âge en classes pour ces raisons :
� prise en compte de la non-monotonie ou non-linéarité de la réponse en

fonction de l’âge

� suppression du problème des extrêmes

� modèle plus robuste

� Nous allons découper l’âge en 10 tranches (ou plus, si le
nombre d’individus est grand) et regarder le % d’individus dans
la cible pour chaque classe d’âge

Florian Pothin Machine Learning supervisé avec R Page 57/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 204

Discrétisation avec CHAID 2/4

127 81 208

61,1% 38,9% 100,0%

104 126 230

45,2% 54,8% 100,0%

93 101 194

47,9% 52,1% 100,0%

113 99 212

53,3% 46,7% 100,0%

93 94 187

49,7% 50,3% 100,0%

149 123 272

54,8% 45,2% 100,0%

108 72 180

60,0% 40,0% 100,0%

116 97 213

54,5% 45,5% 100,0%

77 113 190

40,5% 59,5% 100,0%

71 145 216

32,9% 67,1% 100,0%

1051 1051 2102

50,0% 50,0% 100,0%

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

18-25 ans

25-29 ans

29-32 ans

32-35 ans

35-38 ans

38-40 ans

40-42 ans

42-45 ans

45-51 ans

> 51 ans

tranche d'âge

Total

non oui

cible

Total

Florian Pothin Machine Learning supervisé avec R Page 58/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 205

Discrétisation avec CHAID 3/4

Catégorie % n
O 50,00 1051
N 50,00 1051
Total (100,00) 2102

Noeud 0

Catégorie % n
O 63,55 258
N 36,45 148
Total (19,31) 406

Noeud 9
Catégorie % n
O 45,58 485
N 54,42 579
Total (50,62) 1064

Noeud 8
Catégorie % n
O 53,54 227
N 46,46 197
Total (20,17) 424

Noeud 7
Catégorie % n
O 38,94 81
N 61,06 127
Total (9,90) 208

Noeud 6

PROPENS

AGE
Prob. ajustée - valeur=0,0000, Khi-deux=50,4032, ddl=3

>45(32,45](24,32]<=24

� Nous voyons que certaines classes sont proches du point du
vue du % dans la cible :
� tranches 2 et 3
� tranches 4 à 8
� tranches 9 et 10

� CHAID a fait automatiquement ce que nous avons fait
manuellement

Florian Pothin Machine Learning supervisé avec R Page 59/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 206

Discrétisation avec CHAID 4/4

� Pour la scission de la racine de l’arbre, la variable AGE est
retenue devant la variable REVENUS car la probabilité associée
au χ² des REVENUS est plus grande que celle associée à l’AGE

� Si le nombre de degrés de liberté n’est pas le même pour deux
variables, il faut comparer les p-values et non les χ²

Catégorie % n
O 50,00 1051
N 50,00 1051
Total (100,00) 2102

Noeud 0

Catégorie % n
O 45,71 192
N 54,29 228
Total (19,98) 420

Noeud 12
Catégorie % n
O 53,60 789
N 46,40 683
Total (70,03) 1472

Noeud 11
Catégorie % n
O 33,33 70
N 66,67 140
Total (9,99) 210

Noeud 10

PROPENS

REVENUS
Prob. ajustée - valeur=0,0000, Khi-deux=34,0522, ddl=2

>2667(350,2667]<=350

Florian Pothin Machine Learning supervisé avec R Page 60/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 207

Arbre CART
� Décrit dans l'ouvrage classique de Breiman, Friedman, Olshen et

Stone (1984) : Classification and Regression Trees
� Le critère de division est basé sur une fonction d’impureté
� Optimal : toutes les scissions possibles sont examinées
� Optimal : dispositif d’élagage performant

� l’arbre maximum construit, l’algorithme en déduit une séquence de sous-
arbres par élagages successifs, et retient celui qui optimise un certain critère

� Général : variable à expliquer quantitative ou qualitative
 CART sert à la régression comme au classement

� Général : CART permet la prise en compte de coûts Cij de mauvaise
affectation (d’un individu de la classe j dans la classe i) en les intégrant
dans le calcul de l’indice de Gini ∑ W!:T!T:!j:

� Dans sa version la plus courante, CART est binaire
� pour segmenter moins rapidement les données

� Gère les valeurs manquantes en recourant aux variables
équidivisantes (« surrogate variables »)
� différent de CHAID

� R : packages rpart, tree et rpartOrdinal (Y ordinale)

Florian Pothin Machine Learning supervisé avec R Page 61/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 208

Scission avec CART
� La scission de la racine se fait par l’âge, comme avec CHAID, mais

l’arbre binaire est moins équilibré :

� On peut aussi pénaliser les scissions déséquilibrées
� multiplier la baisse d’impureté par un coefficient (pGpD)α dépendant de la

proportion d’individus allant à gauche et de la proportion d’individus
allant à droite, avec α ≥ 0 (0 pour la scission habituelle)

� Ces scissions déséquilibrées sont moins rares avec l’entropie
� CART est apte à détecter rapidement des profils très marqués

Catégorie % n
O 50,00 1051
N 50,00 1051
Total (100,00) 2102

Noeud 0

Catégorie % n
O 63,55 258
N 36,45 148
Total (19,31) 406

Noeud 2
Catégorie % n
O 46,76 793
N 53,24 903
Total (80,69) 1696

Noeud 1

AGE
Taux d'amélioration=0,0088

>45,5<=45,5

Florian Pothin Machine Learning supervisé avec R Page 62/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 209

CART et complexité du choix (C1)

� Si une variable explicative qualitative X a un ensemble E de n
valeurs possibles x1, …, xn, toute condition de séparation sur
cette variable sera de la forme

� X ∈ E’, où E’ ⊂ E - {0}

> 2n-1 — 1 conditions de séparation possibles

� Pour une variable explicative continue X, la complexité est liée
au tri des valeurs x1, …, xn de X, puisqu’une fois les variables
dans l’ordre x1 ≤ … ≤ xn, il suffit de trouver l’indice k tel que la
condition

� X ≤ moyenne (xk , xk+1)

soit la meilleure (selon le critère choisi, par exemple Gini)

Florian Pothin Machine Learning supervisé avec R Page 63/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 210

Variables équiréductrices

� Variables assurant la réduction de l’impureté des nœuds la plus
proche possible de celle de la variable retenue

� Variables « concurrentes » (« primary splits ») utilisées lors de
la construction de la variable pour repérer d’éventuelles
variables plus intéressantes que celles retenues en première
approche
� plus fiables

� mieux acceptées par les experts métiers

� moins coûteuses à collecter

Florian Pothin Machine Learning supervisé avec R Page 64/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 211

Variables équidivisantes

� Variables répartissant les individus de la façon la plus proche
possible de celle de la variable retenue avec sa scission
� si le nœud est scindé par la condition {X < x}, on recherche les

variables équidivisantes avec des arbres de profondeur 1 ayant la
condition {X < x} pour variable à expliquer (et sans coûts de
mauvais classement)

� soit n le nombre d’individus, n1 le nombre d’individus bien classés par
l’arbre précédent et n0 le nombre d’individus bien classés par la règle
majoritaire :

� la concordance de la variable équidivisante est (n1-n0)/(n-n0)

� on ne s’intéresse qu’aux variables équidivisantes de concordance > 0

� Variables « de rechange » ou « suppléantes » (« surrogate
splits ») utilisées en cas de valeur manquante pour un individu
de la variable retenue

Florian Pothin Machine Learning supervisé avec R Page 65/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 212

Variables équidivisantes : exemple

� Si la scission d’un nœud est produite par la condition {X < x},
et si une variable équidivisante est {Y < y}, avec un croisement

� la concordance vaut (120-84)/(144-84) = 0,6
� C’est mieux que la règle de la majorité consistant à affecter

tous les individus à la modalité {X ≥ x}
� On ne calcule pas la concordance 120/144 (0,833) car on veut

mesurer le gain de concordance par rapport à la règle
majoritaire
� ainsi un bon classement de 72 individus sur 144 n’est pas affecté d’un

taux de 0,5 mais de -0,2 (72-84/144-84) car il est inférieur à la règle
majoritaire qui classe bien 84 individus

Y < y Y ≥ y

X < x 40 20

X ≥ x 4 80

Florian Pothin Machine Learning supervisé avec R Page 66/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 213

Traitement des valeurs manquantes
� Apprentissage :

� un individu participe si sa variable à expliquer et au moins une variable
explicative ont une valeur non manquante

� l’indice de Gini de la scission {X < x} d’un nœud est calculé sans prendre
en compte les individus avec X manquant

� on ajuste les nk/n pour que leur somme = 1
� Application :

� si X est manquant pour un individu, il :
� n’est pas affecté à un nœud-fils et reste au niveau du père (paramètre
usesurrogate = 0 de rpart)

� est affecté à un nœud-fils à l’aide d’une variable équidivisante (paramètre
usesurrogate = 1 ou 2 de rpart)
 si aucune variable équidivisante, application de la règle majoritaire (usesurrogate = 2,

valeur par défaut) ou on reste au niveau père (usesurrogate = 1)

� on a toujours une prédiction ≠ NA car même si tous les prédicteurs
impliqués dans des scissions sont manquants pour un individu, il est
affecté à la racine avec les probabilités a priori
� sauf si na.action = na.omit ou na.action = na.fail

Florian Pothin Machine Learning supervisé avec R Page 67/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 214

Importance d’une variable

� Une variable X1 peut ne jamais apparaître dans l’arbre, tout en étant
très corrélée à une variable X2 qui apparaît souvent et la masque
�  il ne faut pas évaluer l’importance de X1 en ne considérant que les nœuds

de l’arbre où X1 a été retenue pour la scission

� Importance d’une variable dans un nœud :
� = baisse d’impureté de la scission produite par la variable si elle a été retenue

pour la scission du nœud

� = (baisse d’impureté x concordance avec la variable retenue), si la variable est
équidivisante pour ce nœud (de concordance > 0)

� = 0 sinon

� Importance d’une variable dans un arbre :
� somme de l’importance de la variable dans l’ensemble des nœuds

� normalisée pour que la somme des importances des variables = 100

� rpart met l’importance d’une variable à 0 si elle est < 0,01

Florian Pothin Machine Learning supervisé avec R Page 68/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 215

Élagage et sur-apprentissage

� Il est préférable d’élaguer un arbre pour éviter la remontée du
taux d’erreur due au sur-apprentissage

Relative Cost vs Number of Nodes
0.248

R
el

at
iv

e
C

os
t

Number of Nodes

0.20

0.22

0.24

0.26

0.28

0.30

0 100 200 300 400

Relative Cost vs Number of Nodes
0.248

R
el

at
iv

e
C

os
t

Number of Nodes

0.20

0.22

0.24

0.26

0.28

0.30

0 100 200 300 400

Source : CART (Salford)

taux
d'erreur données de test

 et d'application

données apprentissage

profondeur arbre
élaguer ici (nb de feuilles)

Florian Pothin Machine Learning supervisé avec R Page 69/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 216

Élagage dans CART

� Il faut trouver le bon compromis entre l’ajustement de l’arbre
en apprentissage (biais) et sa capacité de généralisation
(variance)

� Le Lasso traite ce problème par l’ajout d’une pénalisation dont
l’augmentation progressive annule un à un les coefficients de la
régression

� La stratégie inventée par les inventeurs de CART consiste à
commencer par construire un arbre maximal avant de l’élaguer
en coupant les branches jugées les moins généralisables

� Ce n’est pas l’indice de Gini ni l’entropie qui sont utilisés pour
contrôler l’élagage, mais le taux d’erreur

Florian Pothin Machine Learning supervisé avec R Page 70/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 217

Coût-complexité d’un arbre
� Complexité (ou taille) de l’arbre : nombre de feuilles (≠ racine)
� Coût-complexité CCP(arbre) = CR(arbre) + CP.(# feuilles)
� CR : coût de l’arbre calculé par resubstitution (sur les données

d’apprentissage)
� ce coût est généralement un taux d’erreur dans un arbre de classement,

et une erreur quadratique en régression (mais il peut intégrer des coûts
de mauvaise affectation)

� Minimum de CR atteint pour l’arbre maximal Tmax : attention au sur-
apprentissage !

� Solution : augmenter progressivement le paramètre de complexité CP
et chercher un sous-arbre TCP ⊂ Tmax minimisant le coût-complexité
CCP

� Pour CP = 0, le sous-arbre minimisant le coût-complexité est l’arbre
maximal, mais lorsque CP augmente, le nombre de feuilles représente
un coût et la somme « CR(arbre) + CP.(# feuilles) » est minimisée
pour un nombre plus petit de feuilles

Florian Pothin Machine Learning supervisé avec R Page 71/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 218

Premier résultat sur l’élagage
� Quand CP augmente, le sous-arbre TCP minimisant CCP est de plus en

plus petit  on a une séquence descendante des tailles des arbres
� à la complexité CP = 0 correspond l’arbre maximal
� au-delà d’un certain seuil de CP, il faut que le nombre de feuilles soit nul, car le

coût par resubstitution de l’arbre réduit à la racine est inférieur à celui de
n’importe quel arbre augmenté de CP

� 1er résultat : si deux sous-arbres minimisent le coût-complexité pour
une valeur CP, alors ils sont égaux ou l’un contient l’autre  il existe
un arbre TCP de taille minimale qui minimise le coût-complexité CCP

� Quand CP parcourt l’ensemble infini des valeurs réelles ≥ 0,
l’ensemble des arbres TCP est fini, et un arbre TCP minimise aussi CCP’

pour une valeur CP’ > CP jusqu’à ce que CP’ atteigne une valeur à
laquelle corresponde un arbre TCP’ strictement plus petit que TCP

� On obtient ainsi une séquence croissante des CP, à laquelle
correspond une séquence décroissante des TCP

Florian Pothin Machine Learning supervisé avec R Page 72/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 219

Second résultat sur l’élagage
� 2e résultat : ces arbres sont inclus les uns dans les autres, ce qui

signifie que chacun est obtenu par élagage du précédent
� De plus, il existe une procédure simple et rapide pour

déterminer la branche de TCP à élaguer à chaque étape : il faut
trouver la plus petite valeur CP’ > CP pour laquelle TCP a un
nœud {t} tel que CCP’({t}) = CCP’(branche de TCP ayant {t} pour
racine)
� cette valeur existe puisqu’une pénalisation suffisamment grande finira

par donner à la branche issue d’un nœud {t} un coût-complexité plus
grand qu’au nœud lui-même

� On peut donc élaguer cette branche puisque l’arbre élagué en
{t} conduit au même coût-complexité pour CP’

� Ce processus est effectif et assez rapide à mettre en œuvre
� bien plus que s’il fallait effectuer une recherche exhaustive des sous-

arbres de Tmax

Florian Pothin Machine Learning supervisé avec R Page 73/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 220

Synthèse
� Par élagage successif, nous avons obtenu une séquence de sous-

arbres emboîtés
Tmax ⊃ T1 ⊃ T2 ⊃ … ⊃ Tm = {racine}

� de complexités croissantes
0 = CP0 < CP1 < CP2 < … CPm

� et dans laquelle chaque Ti est le sous-arbre dont le coût par
resubstitution est le plus bas de tous les sous-arbres de Tmax de
même taille

� Cette séquence de sous-arbres étant obtenue, il reste bien sûr à
déterminer le niveau optimal de complexité pour l’ajustement
et la généralisation du modèle

� En pratique (voir le package rpart), on peut limiter la
séquence explorée en fixant une valeur minimale CP0 > 0 (c’est
le paramètre cp)

Florian Pothin Machine Learning supervisé avec R Page 74/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 221

Mise en œuvre avec R
� Package le plus utilisé : rpart (Recursive PARTitioning)

� à la base de ipred pour le bagging et ada pour le boosting
� ne gère pas d’échantillon de test (contrairement à randomForest)
� autre package (moins rapide) : tree

� Pour le classement (method = class) et la régression (method
= anova)

� Avec l’indice de Gini (split = gini) et l’entropie (split =
information)

� Permet de spécifier des coûts, l’utilisation de variables équidivisantes,
la pénalisation minimale de la complexité dans le processus d’élagage
(cp) ou la profondeur maximale (maxdepth), l’effectif minimum
d’un nœud pour être scindé (minsplit) et l’effectif minimum d’une
feuille (minbucket, valeur par défaut = minsplit/3)

� Arbre de profondeur maximale :
> cart <- rpart(y ~ ., data = train, method="class",
parms=list(split="gini"), cp=0)

Florian Pothin Machine Learning supervisé avec R Page 75/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 222

Mise en œuvre avec R (suite)
� Arbre avec contraintes sur l’élagage :

> cart <- rpart(y ~ . , data = train, method="class",
parms=list(split="gini"), control=list(minbucket=30,
minsplit=30*2, maxdepth=4))

� « Stump » (arbre à deux feuilles) :
> cart <- rpart(y ~ . , data = train, method="class",
parms=list(split="gini"), control=list(maxdepth=1,cp=-
1,minsplit=0))

� Évolution de l’élagage en fonction de la pénalisation
> printcp(cart)

� Affichage des informations précédentes + variables concurrentes et
suppléantes, et importance des variables
> summary(cart, digits=3)

� Élagage à un niveau de pénalisation fixé :
> prunedcart4f <- prune(cart, cp=0.0328152)
� à noter : pas d’application automatique dans rpart de la règle 1 SE ou 0 SE

Florian Pothin Machine Learning supervisé avec R Page 76/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 223

Détail de l’arbre
> cart # commande équivalente à "print(cart)"

n= 666

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 666 200 0 (0.69969970 0.30030030)

2) Comptes=CC > 200 euros,Pas de compte 300 35 0 (0.88333333 0.11666667)

4) Montant_credit< 9504 291 30 0 (0.89690722 0.10309278)

8) Objet_credit=Autres,Electroménager,Formation,Mobilier,Vidéo HIFI,Voiture
neuve,Voiture occasion 247 18 0 (0.92712551 0.07287449) *

9) Objet_credit=Business,Etudes,Travaux 44 12 0 (0.72727273 0.27272727)

18) Autres_credits=Aucun crédit 33 5 0 (0.84848485 0.15151515) *

…

� Pour chaque nœud, nous avons :
� son numéro node, par exemple « 2 »
� sa règle de scission split, par exemple « Comptes=CC > 200 euros,Pas de compte »
� le nombre n d’individus dans ce nœud, par exemple « 300 »
� le nombre loss d’individus mal classés (∉ classe majoritaire), ici « 35 »
� la valeur prédite yval, qui est la classe majoritaire, ici « 0 »
� la probabilité d’appartenance à chaque classe, ici (0,88333333 et 0,11666667)
� le cas échéant, l’indication par un * à la fin de la ligne que le nœud est terminal

Florian Pothin Machine Learning supervisé avec R Page 77/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 224

Variables concurrentes et suppléantes
� Affichage de la fonction summary (primary splits : variables concurrentes, surrogate splits : suppléantes)
Node number 1: 666 observations, complexity param=0.07

predicted class=0 expected loss=0.3 P(node) =1

class counts: 466 200

probabilities: 0.700 0.300

left son=2 (300 obs) right son=3 (366 obs)

Primary splits:

Comptes splits as RRLL, improve=36.8, (0 missing)

Epargne splits as RLLRL, improve=14.0, (0 missing)

Historique_credit splits as LLRRL, improve=14.0, (0 missing)

Montant_credit < 8020 to the left, improve=12.5, (0 missing)

Duree_credit < 34.5 to the left, improve=11.3, (0 missing)

Surrogate splits:

Epargne splits as RLLRL, agree=0.629, adj=0.177, (0 split)

Objet_credit splits as RRRRRRLLRL, agree=0.581, adj=0.070, (0 split)

Historique_credit splits as RLRRR, agree=0.578, adj=0.063, (0 split)

Age < 40.5 to the right, agree=0.575, adj=0.057, (0 split)

Anciennete_domicile splits as RRLR, agree=0.572, adj=0.050, (0 split)

Node number 2: 300 observations, complexity param=0.00667

predicted class=0 expected loss=0.117 P(node) =0.45

class counts: 265 35

probabilities: 0.883 0.117

……………

Florian Pothin Machine Learning supervisé avec R Page 78/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 225

Affichage d’un arbre dans R avec
rpart.plot

� Affichage amélioré par rapport à la fonction plot de rpart :
> library(rpart.plot)

> cols <- ifelse(prunedcart4f$frame$yval == 1,"green3","red")

> prp(prunedcart4f, type=2, extra=101,
split.box.col="lightgray", nn=TRUE, col=cols, border.col=cols)

Comptes = 3,4

Duree_cr < 22

Objet_cr = A41,A410

0
451 193

100%

0
263 39

47%

0
188 154

53%

0
124 67

30%

1
64 87
23%

0
16 6
3%

1
48 81
20%

yes no

1

2 3

6 7

14 15

Florian Pothin Machine Learning supervisé avec R Page 79/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 226

Affichage d’un arbre dans R avec partykit

� Affichage amélioré par rapport à la fonction plot de rpart :
> library(partykit)

> plot(as.party(prunedcart4f))

Comptes

1

CC > 200 euros, Pas de compte CC [0-200 euros[, CC < 0 euros

Node 2 (n = 302)

1
0

0

0.2

0.4

0.6

0.8

1

Duree_credit

3

< 22.5 ≥ 22.5

Node 4 (n = 191)

1
0

0

0.2

0.4

0.6

0.8

1

Objet_credit

5

Autres, Voiture occasionBusiness, Electroménager, Etudes, Mobilier, Travaux, Vidéo HIFI, Voiture neuve

Node 6 (n = 22)
1

0

0

0.2

0.4

0.6

0.8

1
Node 7 (n = 129)

1
0

0

0.2

0.4

0.6

0.8

1

Florian Pothin Machine Learning supervisé avec R Page 80/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 227

Affichage d’un arbre dans R avec rattle

� Affichage amélioré par rapport à la fonction plot de rpart :
> library(rattle)

> fancyRpartPlot(prunedcart4f, sub=" ")

Comptes = CC > 200 euros,Pas de compte

Duree_credit < 22

Objet_credit = Autres,Voiture occasion

yes no

1

2

3

6

7

14 15

Comptes = CC > 200 euros,Pas de compte

Duree_credit < 22

Objet_credit = Autres,Voiture occasion

0
.70 .30
100%

0
.87 .13

47%

0
.55 .45

53%

0
.65 .35

30%

1
.42 .58

23%

0
.73 .27

3%

1
.37 .63

20%

yes no

1

2

3

6

7

14 15

Florian Pothin Machine Learning supervisé avec R Page 81/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 228

Évolution du paramètre de complexité
� Avec cp = 0, la fonction printcp de rpart affiche :

CP nsplit rel error xerror xstd

1 0.0700000 0 1.000 1.000 0.059148

2 0.0650000 3 0.790 1.000 0.059148

3 0.0350000 4 0.725 0.810 0.055361

4 0.0183333 5 0.690 0.770 0.054404

5 0.0150000 8 0.635 0.840 0.056041

6 0.0133333 10 0.605 0.825 0.055705

7 0.0100000 14 0.550 0.805 0.055245

8 0.0075000 15 0.540 0.880 0.056897

9 0.0066667 17 0.525 0.880 0.056897

10 0.0033333 20 0.505 0.915 0.057601

11 0.0000000 23 0.495 0.960 0.058448

Florian Pothin Machine Learning supervisé avec R Page 82/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 229

Explication du tableau
� Ce tableau affiche, en fonction de CP :

� rel error : erreur calculée par resubstitution

� xerror : erreur calculée par 10-validation croisée

� xstd : écart-type de l’erreur par validation croisée =
K4kk�k× �0K4kk�k

(F!HH4 éDmF%(!HH�%
� nsplit : nombre de scissions (= nombre de feuilles – 1)

� Les taux d’erreur affichés sont relatifs : ils ont été mis à l’échelle afin de valoir 1 pour l’arbre réduit à la racine

� Or l’arbre réduit à la racine n’a pas un taux d’erreur égal à 1 mais à ε (en affectant tous les individus à la
classe majoritaire)  chaque ligne du tableau doit être multipliée par ε pour obtenir l’erreur absolue

CP nsplit rel error xerror xstd

1 0.0700000 0 1.000 1.000 0.059148

…

11 0.0000000 23 0.495 0.960 0.058448

� Ici ε = 200/666 et l’erreur par resubstitution de l’arbre maximal = ε x 0,495 = 0,1486486

� On peut vérifier ce calcul :
> sum(predict(cart,type="class") != train$Cible)/nrow(train)

[1] 0.1486486

� Et calculer l’écart-type relatif de l'erreur par validation croisée :
> x <- 0.960*200/666 # xerror absolue

> sqrt((x*(1-x))/666)/(200/666)

[1] 0.05844841

Florian Pothin Machine Learning supervisé avec R Page 83/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 230

Lecture du tableau
� Reprenons le tableau

CP nsplit rel error xerror xstd
1 0.0700000 0 1.000 1.000 0.059148
2 0.0650000 3 0.790 1.000 0.059148
…
10 0.0033333 20 0.505 0.915 0.057601
11 0.0000000 23 0.495 0.960 0.058448

� On a CCP = (0,0033333 x 20) + 0,505 = (0,0033333 x 23) + 0,495 
l’arbre élagué correspondant à CP = 0,0033333 est l’arbre à 21
feuilles (20 scissions), puisque son coût par resubstitution, un peu plus
élevé que celui de l’arbre maximal à 24 feuilles, est compensé par une
pénalisation moins grande (et qu’on retient le plus petit des arbres
minimisant le coût-complexité CCP)

� On a (0,07 x 3) + 0,79 = 1 = (0,07 x 0) + 1 (coût-complexité de
l’arbre réduit à la racine)  l’arbre élagué correspondant à CP = 0,07
est la racine

Florian Pothin Machine Learning supervisé avec R Page 84/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 231

Règles d’élagage

� « 0 SE » : élaguer l’arbre au minimum du taux d'erreur (plus
généralement, du coût) calculé par validation croisée ou sur un
échantillon de test

� « 1 SE » : élaguer l’arbre au niveau du plus petit arbre (c'est-à-
dire la plus grande valeur de CP) dont l’erreur soit inférieure à
l’erreur minimale plus un écart-type

� La règle « 1 SE » conduit à retenir un arbre moins complexe
que la règle « 0 SE », et elle est cohérente avec le fait qu’il faut
tenir compte de la variabilité de l’erreur calculée par validation
croisée

� Dans les tests sur données simulées effectués par Breiman et al.,
la règle « 1 SE » conduit à une plus grande stabilité dans la taille
des arbres élagués

Florian Pothin Machine Learning supervisé avec R Page 85/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 232
cp

X
-v

al
 R

el
at

iv
e

E
rr

or

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

Inf 0.067 0.025 0.014 0.0087 0.0047 0

1 4 5 6 9 11 15 16 18 21 24

size of tree

Graphique
� La fonction plotcp produit un graphique représentant

l’évolution de l’erreur par validation croisée et du nombre de
feuilles, en fonction de la pénalisation

L’erreur
minimale plus
un écart-type
est
représentée
par une ligne
horizontale en
pointillés

Application de « 0
SE »
Application de « 1
SE »

Erreur minimale +
1 écart-type =
> 0.770 +
0.054404
[1] 0.824404

Florian Pothin Machine Learning supervisé avec R Page 86/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 233

Élagage automatique
� Application de la règle « 1 SE » :

> xerr <- cart$cptable[,"xerror"]

> minxerr <- which.min(xerr)

> seuilerr <- cart$cptable[minxerr, "xerror"] +
cart$cptable[minxerr, "xstd"]

> xerr [xerr < seuilerr][1]

3

0.81

> mincp <- cart$cptable[names(xerr [xerr < seuilerr][1]),
"CP"]

> mincp

[1] 0.035

> prunedcart <- prune(cart,cp=mincp)

� Application de la règle « 0 SE » :
prunedcart <- prune(cart,
cp=cart$cptable[which.min(cart$cptable[,"xerror"]),"CP"])

Florian Pothin Machine Learning supervisé avec R Page 87/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 234

Prédiction d’un arbre
� Application de l’arbre élagué à l’échantillon de validation :

> prunedcart5f <- prune(cart, cp=0.035)
> pred.cart <- predict(prunedcart5f, type="prob", valid)

� Création d’une matrice avec une colonne par modalité de la variable à
expliquer, chaque colonne contenant la probabilité associée

� Exemple des cinq premières valeurs dans l’échantillon de test :
> head(pred.cart,5)

0 1
1 0.7119565 0.2880435
2 0.3047619 0.6952381
3 0.8833333 0.1166667
4 0.3047619 0.6952381
6 0.8833333 0.1166667

� Aire sous la courbe ROC :
> library(pROC)
> auc(valid$Cible, pred.cart[,2], quiet=TRUE)
Area under the curve: 0.6894

Florian Pothin Machine Learning supervisé avec R Page 88/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 235

Aire sous la courbe ROC d’un arbre
� Élagage de l’arbre maximal à 5 et 6 feuilles, application à

l’échantillon de validation et superposition des aires
sous la courbe ROC
> prunedcart5f <- prune(cart, cp=0.035)

> pred.cart <- predict(prunedcart5f,
type="prob", valid)

> prunedcart6f <- prune(cart, cp=0.0183333)

> pred.cart6f <- predict(prunedcart6f,
type="prob", valid)

> roc <- plot.roc(valid$Cible, pred.cart[,2],
col='black', lty=1, ci=TRUE, quiet=TRUE)

> plot.roc(valid$Cible, pred.cart6f[,2],
add=TRUE, col='red', lty=2, ci=TRUE, quiet=TRUE)

> roc.se <- ci.se(roc,
specificities=seq(0,1,.01), boot.n=2000)

> plot(roc.se, type="shape", col="#0000ff22")

> legend("bottomright",c('6 feuilles','5
feuilles'),col=c('red','black'),lty=c(2,1),lwd=3)

� La courbe ROC de l’arbre à 6 feuilles est à l’intérieur
de l’intervalle de confiance à 95 % de celle de l’arbre à
5 feuilles

� On constate généralement que les courbes ROC des
meilleurs modèles ajustés sur un même échantillon sont
à l’intérieur d’un intervalle de confiance à 95 %

Florian Pothin Machine Learning supervisé avec R Page 89/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 236

Calcul des erreurs et des aires sous la
courbe ROC
� Ajout de l’aire sous la courbe ROC à la table des erreurs en fonction du paramètre de

complexité :
> set.seed(235)

> auc <- matrix(NA,nrow(cart$cptable)-1,4)

> for(i in 2:nrow(cart$cptable))

+ {

+ cartp <- prune(cart, cp=cart$cptable[i,"CP"])

+ predc <- predict(cartp, type="prob", valid)[,2]

+ auc[i-1,1] <- cart$cptable[i,"CP"]

+ auc[i-1,2] <- cart$cptable[i,"nsplit"]+1

+ auc[i-1,3] <- cart$cptable[i,"xerror"]

+ auc[i-1,4] <- auc(valid$Cible, predc, quiet=TRUE)

+ }

> colnames(auc) <- c("CP","nfeuilles","erreur","AUC")

> auc

CP nfeuilles erreur AUC

[1,] 0.065000000 4 1.000 0.6863462

[2,] 0.035000000 5 0.810 0.6894231

[3,] 0.018333333 6 0.770 0.6869658

[4,] 0.015000000 9 0.840 0.6955128

[5,] 0.013333333 11 0.825 0.6846581

[6,] 0.010000000 15 0.805 0.6927350

[7,] 0.007500000 16 0.880 0.6864744

[8,] 0.006666667 18 0.880 0.6925427

[9,] 0.003333333 21 0.915 0.6822863

[10,] 0.000000000 24 0.960 0.6820299

Florian Pothin Machine Learning supervisé avec R Page 90/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 237

Arbre C5.0
� C5.0 est adapté comme CART à tout type de variables

� C5.0 est plus rapide et gère mieux la mémoire que C4.5 aussi inventé
par J.R. Quinlan

� Dispositif d’optimisation de l’arbre par construction puis
élagage d’un arbre maximum
� le procédé d’élagage est différent de celui de CART et il est lié à

l’intervalle de confiance du taux d’erreur donc à l’effectif du nœud
� Utilisation de l’entropie comme fonction d’impureté
� C5.0 n’est pas binaire. Les variables qualitatives, au niveau d’un

nœud père, donnent naissance à un nœud fils par modalité
� inconvénient : les nœuds voient plus rapidement leurs effectifs baisser

� Transformation de l’arbre en règles qui permet une
simplification par suppression de règles redondantes mais fait
perdre la structure d’arbre

� R : packages C50 et RWeka

Florian Pothin Machine Learning supervisé avec R Page 91/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 238

Prédiction d’une variable ordinale I

� Les coûts de mauvais classement permettent de prédire une
variable ordinale

� Soient s1 < s2 < … < sJ les valeurs ordonnées de Y
� Un coût de mauvais classement peut être Cij = |si – sj|
� Une erreur de classement dans une classe adjacente a moins de

poids que dans une classe distante

� L’indice de Gini devient alors ∑ ∑ |h! − h:|T!T:
o
:&�

o
!&�

� = 2 ∑ h:�� − h: p:(1 − p:)o0�
:&� avec p: = ∑ Tm

:
m&� (proportion

cumulée) d’après Piccarreta (2001)

� = 2 ∑ p:(1 − p:)o0�
:&� dans le cas (fréquent) où h:�� − h: = 1

pour tout j ≥ 1

� ∑ p:(1 − p:)o0�
:&� est l’indice de Gini ordinal de Piccarreta (2008)

Florian Pothin Machine Learning supervisé avec R Page 92/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 239

Prédiction d’une variable ordinale II

� Pour l’élagage d’un arbre avec Y ordinale, le taux d’erreur
�
% ∑ 1q/jq̂(K/)%!&� peut être remplacé par un coût total de mauvais

classement ∑ h! − ĥ(!)%!&� faisant intervenir la distance entre
la valeur ordinale observée h! et prédite ĥ(!)

� Ce coût peut être utilisé dans le calcul du coût-complexité
utilisé pour l’élagage de l’arbre

� Avec un coût de mauvais classement Cij = (si – sj)², on peut
montrer que l’indice de Gini est proportionnel à la variance des
valeurs s1, s2, … , sJ, et que l’objectif de réduction de l’indice de
Gini équivaut à la réduction de la variance des sj dans les
nœuds-fils, donc au développement d’un arbre de régression
dont les valeurs numériques sont les valeurs sj

Florian Pothin Machine Learning supervisé avec R Page 93/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 240

Prédiction d’une variable ordinale III

� Le package R rpartScore met en œuvre les arbres de
décision ordinaux sur la base de CART avec :
� les coûts Cij = |si – sj| (split="abs") et Cij = (si – sj)²

(split="quad")

� le coût total de mauvais classement ∑ h! − ĥ(!)%!&� (prune="mc")

� La fonction rpartScore renvoie un objet de la classe rpart

� NB : le package rpart n’implémente pas les coûts de mauvaise
classification car il suppose que le coût Cij d’affectation à Gi d’un
individu qui est dans Gj ne dépend que de Gj et quand on lui
spécifie une matrice de coûts comme paramètre loss, il
remplace Cij par ΣiCij

Florian Pothin Machine Learning supervisé avec R Page 94/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 241

Avantages des arbres de décision 1/2

� Ils fournissent des règles :
� explicites

� visuelles

� qui s’écrivent directement avec les variables d’origine

� Méthode non paramétrique, non perturbée par :
� la distribution non linéaire ou non monotone des prédicteurs

par rapport à la variable à expliquer

� la colinéarité des prédicteurs

� les interactions entre les prédicteurs

� les individus hors norme (isolés dans des règles spécifiques)

� les fluctuations des prédicteurs non discriminants (l’arbre
sélectionne les plus discriminants)

Florian Pothin Machine Learning supervisé avec R Page 95/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 242

Avantages des arbres de décision 2/2

� Beaucoup traitent (sans recodification) des données
hétérogènes (numériques et non numériques, voire
manquantes)
� CART traite les valeurs manquantes en remplaçant les variables

concernées par des variables équidivisantes

� CHAID traite l’ensemble des valeurs manquantes d’une variable comme
une modalité à part ou pouvant être associée à une autre

� éviter d’avoir trop de valeurs manquantes

� Temps de calcul assez rapide

Florian Pothin Machine Learning supervisé avec R Page 96/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 243

Limites des arbres de décision 1/2

� Les nœuds du niveau n+1 dépendent fortement de ceux du
niveau n
� les variables sont testées séquentiellement et non simultanément
 la modification d’une seule variable, si elle est placée près du sommet de

l’arbre, peut entièrement modifier l’arbre
� un arbre détecte des optimums locaux et non globaux
� un arbre est sensible au franchissement d’un seuil de scission
manque de robustesse

� L’apprentissage nécessite un nombre suffisant d’individus
� pour avoir si possible au moins une trentaine individus par nœud

� Même avec des variables explicatives continues, la prédiction est
distribuée de façon discontinue puisqu’elle dépend des feuilles
� nombre de valeurs prédites distinctes ≤ nombre de feuilles

Florian Pothin Machine Learning supervisé avec R Page 97/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 244

Limites des arbres de décision 2/2

� La forme des modèles obtenus, (X ≤
n) et (X ∈ {a,b,c…}), conduit à
délimiter des régions rectangulaires
de l’espace des variables qui ne
correspondent pas forcément à la
distribution des individus

� Les arbres obliques remédient à cet
inconvénient en substituant aux règles
simples de division des nœuds, de la
forme (X ≤ n), des règles sur plusieurs
variables du type (aX + bY+ … ≤ n)
et permettent un classement au moins
aussi précis que si l’arbre avait
beaucoup plus de nœuds

10 15 20

10
20

30
40

50
60

Analyse discriminante linéaire

X

Y

10 15 20

10
20

30
40

50
60

Arbre de décision

X

Y

Florian Pothin Machine Learning supervisé avec R Page 98/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 245

La classification automatique

Florian Pothin Machine Learning supervisé avec R Page 99/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 246

Terminologie : de nombreux synonymes

� Classification, ou classification automatique, terme
généralement employé par les auteurs français
� attention : il est employé dans un autre sens par les anglo-saxons (qui

disent « classification » pour désigner la technique prédictive que les
français appellent « classement »)

� Segmentation : terme employé en marketing (les « segments
de clientèle ») et assez explicite

� Typologie, ou analyse typologique

� Clustering : terme anglo-saxon le plus courant
� Taxinomie ou taxonomie (biologie, zoologie)
� Nosologie (médecine)
� Reconnaissance de forme non supervisée (réseaux de

neurones)
� ...

Florian Pothin Machine Learning supervisé avec R Page 100/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 247

Structure des données à classer

� Soit une matrice rectangulaire dont :
� lignes = individus

� colonnes = variables

� Cette structure permet de classer individus ou variables

� Soit une matrice carrée de similarités, distances entre :
� individus

� ou variables (par exemple : la matrice des corrélations)

� Cette structure permet aussi de classer individus ou
variables

Florian Pothin Machine Learning supervisé avec R Page 101/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 248

Structure des classes obtenues

� Soit 2 classes sont toujours disjointes : méthodes de
partitionnement :
� généralement, le nombre de classes est défini a priori

� certaines méthodes permettent de s’affranchir de cette contrainte
(méthodes basées sur la densité comme DBSCAN ou OPTICS)

� Soit 2 classes sont disjointes ou l’une contient l’autre :
méthodes hiérarchiques :
� ascendantes (agglomératives : agglomération progressive d’éléments 2 à 2)

� descendantes (divisives)

� Soit 2 classes peuvent avoir plusieurs objets en commun (classes
« empiétantes » ou « recouvrantes ») :
� analyse « floue », où chaque objet a une certaine probabilité

d’appartenir à une classe donnée

Florian Pothin Machine Learning supervisé avec R Page 102/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 249

Les différentes méthodes de classification
� Méthodes de partitionnement

� centres mobiles, k-means et nuées dynamiques
� k-modes, k-prototypes, k-représentants (k-medoids)
� réseaux de Kohonen
� méthodes basées sur la densité
� méthode d’agrégation des similarités

� Méthodes hiérarchiques
� ascendantes (agglomératives)

� basées sur une notion de distance ou de densité

� descendantes (divisives)

� Méthodes mixtes
� Analyse floue (fuzzy clustering)

Florian Pothin Machine Learning supervisé avec R Page 103/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 250

Applications de la classification
� Marketing : répartir la clientèle en segments dotés chacun d’une

offre et d’une communication spécifique – autres utilisations pour :
� les ciblages des actions commerciales
� l’évaluation du potentiel commercial
� l’affectation des clients aux différents types de commerciaux

� Commercial : répartir l’ensemble des magasins d’une enseigne en
établissements homogènes du point de vue type de clientèle, CA,
CA par rayon (selon type d’article), taille du magasin…

� Médical : déterminer des groupes de patients susceptibles d’être
soumis à des protocoles thérapeutiques déterminés, chaque groupe
regroupant tous les patients réagissant identiquement

� Sociologie : répartir la population en groupes homogènes du point
de vue sociodémographique, style de vie, opinions, attentes…

� …

Florian Pothin Machine Learning supervisé avec R Page 104/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 251

0 5 10

PCR1

-5

0

5

10

P

C

R

2

Exemple de segmentation de clientèle
(bancaire)

forts revenusfaibles revenus

patrimoine - âge

crédit conso - CB

S1 (rouge) : peu actifs
S2 (rose) : jeunes
S3 (bleu) : consommateurs

S4 (orange) : seniors
S5 (noir) : aisés
S6 (vert) : débiteurs

Florian Pothin Machine Learning supervisé avec R Page 105/106

31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 252

Interprétation des classes

� Statistiques descriptives des classes (comparaison des moyennes
ou des modalités par un test statistique)

� Analyse factorielle représentant les classes obtenues et les
variables initiales

� Classification des variables : variables initiales + indicatrices des
classes obtenues

� Arbre de décision avec la classe obtenue comme variable à
expliquer

Florian Pothin Machine Learning supervisé avec R Page 106/106

