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Calcul des weights of evidence (WoE) II
� On a créé un data frame contenant les WoE des variables explicatives initiales

> head(credit_woe)

Comptes Duree_credit Historique_credit Objet_credit Montant_credit Epargne Anciennete_emploi

1 -0.8180987    0.4988765        0.73374058    0.1643031      0.2058521  0.7621401        0.29871667

2 -0.4013918   -0.9162907       -0.08786876    0.1643031     -0.5524983 -0.2524534       -0.03210325

3  1.1762632    0.4988765        0.73374058   -0.3109932      0.2058521 -0.2524534        0.29871667

4 -0.8180987   -0.9162907       -0.08786876    0.1643031     -0.5524983 -0.2524534        0.29871667

5 -0.8180987   -0.2035434       -0.08786876   -0.3592005     -0.5524983 -0.2524534       -0.03210325

6  1.1762632   -0.2035434       -0.08786876   -0.3109932     -0.5524983  0.7621401       -0.03210325

Taux_effort Situation_familiale Garanties Anciennete_domicile Biens Age Autres_credits

1 -0.15730029           0.1616414 -0.02797385        -0.001152738  0.46103496  0.1391971      0.1211786

2  0.15546647          -0.2353408 -0.02797385        -0.070150705  0.46103496 -0.5288441      0.1211786

3  0.15546647           0.1616414 -0.02797385         0.054941118  0.46103496  0.1391971      0.1211786

4  0.15546647           0.1616414  0.58778666        -0.001152738 -0.03188189  0.1391971      0.1211786

5  0.06453852           0.1616414 -0.02797385        -0.001152738 -0.58608236  0.1391971      0.1211786

6  0.15546647           0.1616414 -0.02797385        -0.001152738 -0.58608236  0.1391971      0.1211786

Statut_domicile Nb_credits Type_emploi Nb_pers_charge Telephone Cible

1       0.1941560  0.1157105  0.02278003    -0.00281611  0.09863759     0

2       0.1941560 -0.0748775  0.02278003    -0.00281611 -0.06469132     1

3       0.1941560 -0.0748775  0.09716375     0.01540863 -0.06469132     0

4      -0.4302047 -0.0748775  0.02278003     0.01540863 -0.06469132     0

5      -0.4302047  0.1157105  0.02278003     0.01540863 -0.06469132     1

6      -0.4302047 -0.0748775  0.09716375     0.01540863  0.09863759     0

� On crée un échantillon d’apprentissage et un de validation
> train  <- credit_woe[id,]

> valid  <- credit_woe[-id,]
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Modèle logit sur WoE I
� On ajuste un modèle logit, qui est plus simple, avec un seul degré de liberté par variable

> logit <- glm(Cible~Comptes+Historique_credit+Duree_credit+Age+Epargne+Garanties+Autres_credits, data=train, family=binomial(link = "logit"))

> summary(logit)

Call:

glm(formula = Cible ~ Comptes + Historique_credit + Duree_credit + 

Age + Epargne + Garanties + Autres_credits, family = binomial(link = "logit"), 

data = train)

Deviance Residuals: 

Min       1Q   Median 3Q      Max  

-1.9421  -0.7566  -0.4523   0.8537   2.6282  

Coefficients:

Estimate Std. Error z value Pr(>|z|)    

(Intercept)        -0.8672     0.1009  -8.595  < 2e-16 ***

Comptes            -0.8984     0.1295  -6.937 4.01e-12 ***

Historique_credit -0.8131     0.1822  -4.462 8.11e-06 ***

Duree_credit -0.9974     0.2225  -4.482 7.38e-06 ***

Age                -0.6552     0.3434  -1.908  0.05640 .  

Epargne -1.0354     0.2451  -4.224 2.40e-05 ***

Garanties          -2.0730     0.7990  -2.595  0.00947 ** 

Autres_credits -0.8773     0.4038  -2.172  0.02983 *  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 814.01  on 665  degrees of freedom

Residual deviance: 639.04  on 658  degrees of freedom

AIC: 655.04

Number of Fisher Scoring iterations: 5
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Modèle logit sur WoE II
� Ce nouveau modèle a une aire sous la courbe ROC plus élevée : 0,7596 

0,7657
> pred.logit <- predict(logit, newdata=valid, type="response")

> auc(valid$Cible, pred.logit, quiet=TRUE)

Area under the curve: 0.7657

� Le nombre de coefficients non significatifs au seuil de 5 % est passé de 3 à 1
� c’est l’âge dont la p-value = 5,64 %
> sum(summary(logit)$coefficients[,4] >= 0.05)

[1] 1
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Modèle logit sur WoE III
� La simplification du modèle peut permettre de prendre en compte des variables qualitatives

discriminantes dont certaines modalités ont des coefficients non significativement ≠ 0
� c’est le cas de l’objet de crédit dont la modalité « Intérieur » a une p-value = 96,6 %
> logit <-
glm(Cible~Comptes+Historique_credit+Duree_credit+Age+Epargne+Garanties+Autres_credits+Objet_credit, 
data=train, family=binomial(link = "logit"))

> summary(logit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)    

(Intercept)                                             -0.68304    0.64957  -1.052  0.29302    

ComptesCC < 0 euros                                      0.16917    0.23478   0.721  0.47119    

ComptesCC > 200 euros                                   -1.36324    0.47385  -2.877  0.00402 ** 

ComptesPas de compte                                    -1.46689    0.27164  -5.400 6.66e-08 ***

Historique_creditCrédits passés sans retard             -1.59679    0.37329  -4.278 1.89e-05 ***

Historique_creditPas de crédits ou en cours sans retard -0.90195    0.33336  -2.706  0.00682 ** 

Duree_credit(15,36]                                      0.68982    0.21622   3.190  0.00142 ** 

Duree_credit(36,Inf]                                     1.75035    0.37671   4.646 3.38e-06 ***

Age(25,Inf]                                             -0.51624    0.23857  -2.164  0.03047 *  

EpargnePas épargne ou > 500 euros                       -1.12051    0.25616  -4.374 1.22e-05 ***

GarantiesSans garant                                     1.34003    0.49197   2.724  0.00645 ** 

Autres_creditsCrédits extérieurs                         0.57559    0.24826   2.318  0.02042 *  

Objet_creditIntérieur -0.01234    0.28661  -0.043  0.96566

Objet_creditVoiture neuve                                0.49118    0.31725   1.548  0.12157    

Objet_creditVoiture occasion                            -0.86957    0.43685  -1.991  0.04653 *
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Modèle logit sur WoE IV
� Avec les WoE, on a pu ajouter l’objet du crédit au modèle, dont tous les coefficients sont

significativement ≠ 0 (y compris l’âge)
> logit <- glm(Cible~Comptes+Historique_credit+Duree_credit+Age+Epargne+Garanties+Autres_credits+Objet_credit, 
data=train, family=binomial(link = "logit"))

> summary(logit)

Coefficients:

Estimate Std. Error z value Pr(>|z|)    

(Intercept)        -0.8646     0.1018  -8.493  < 2e-16 ***

Comptes            -0.8792     0.1306  -6.734 1.65e-11 ***

Historique_credit -0.7876     0.1840  -4.280 1.87e-05 ***

Duree_credit -1.0797     0.2279  -4.738 2.16e-06 ***

Age                -0.7849     0.3504  -2.240  0.02508 *  

Epargne -1.0257     0.2467  -4.157 3.23e-05 ***

Garanties          -1.9931     0.8010  -2.488  0.01284 *  

Autres_credits -0.8231     0.4061  -2.027  0.04271 *  

Objet_credit -0.8988     0.2983  -3.013  0.00258 ** 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 814.01  on 665  degrees of freedom

Residual deviance: 629.63  on 657  degrees of freedom

AIC: 647.63

> pred.logit <- predict(logit, newdata=valid, type="response")

> auc(valid$Cible, pred.logit, quiet=TRUE) # Area under the curve: 0.7657

Area under the curve: 0.7801

� On atteint une AUC = 0,780 plus élevée que celle des modèles précédents
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Fonction de densité du score
� Fonctions de densité du score sur les bons et mauvais dossiers

> plot(density(pred.logit[valid$Cible==0]), main="Fonction de densité du score", 
col="blue", xlim = c(-0.2,1.1), ylim = c(0,3),lwd=2)

> lines(density(pred.logit[valid$Cible==1]), col="red", lty=3, lwd=2)

> legend("topright",c("Cible=0", "Cible=1"), lty=c(1,3), col=c("blue","red"), lwd=2)

� À gauche : modèle sur variables initiales – à droite : modèle sur WoE
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Seuils de score I
� On peut découper la note de score en tranches

� On constitue généralement deux ou trois tranches de score :
� une tranche moins risquée, dans laquelle il suffit d’effectuer quelques vérifications indispensables (dans les fichiers de la

Banque de France par exemple) et de demander au client les pièces minimales obligatoires

� une tranche intermédiaire, dans laquelle il faut examiner attentivement le dossier et effectuer une analyse standard de risque

� une tranche plus risquée, dans laquelle la demande est, sinon rejetée, du moins transmise à l’échelon hiérarchique supérieur 
pour un examen approfondi du dossier

� Nous appliquons le modèle à l'ensemble des données, nous découpons la note de score en vingtiles 
(tranches de 5 %), puis nous calculons et affichons les taux d’impayés pour chacun de ces vingtiles
> pred.logit <- predict(logit, newdata=credit2, type="response")

> q <- quantile(pred.logit, seq(0, 1, by=0.05))

> qscore <- cut(pred.logit, q)

> tab <- table(qscore, credit2$Cible)

> ti <- prop.table(tab,1)[,2]

> old <- par(no.readonly = TRUE)

> par(mar = c(7, 4, 2, 0))

> barplot(as.numeric(ti),col=gray(0:length(ti)/length(ti)),

+ names.arg=names(ti), ylab='Taux impayés', ylim=c(0,1),cex.names = 0.8, las=3)

> abline(v=c(7.3,19.3),col="red")

> par(old)
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Seuils de score II
� Nous pouvons discerner deux seuils assez naturels à 0,11 et 0,527, que nous 

utilisons comme limites des tranches du score, et nous obtenons :
� une tranche à faible risque, qui regroupe 29,6 % des dossiers et a un taux d’impayés de 6 %

� une tranche à risque moyen, qui regroupe 50,2 % des dossiers et a un taux d’impayés de 29 %

� une tranche à fort risque, qui regroupe 20,2 % des dossiers et a un taux d’impayés de 67 %

� Nous voyons que le score est très discriminant, puisque le taux d’impayés de 
la tranche à fort risque est 11 fois plus élevé que celui de la tranche à faible 
risque
> zscore <- recode(pred.logit, "lo:0.11='Faible'; 0.11:0.527='Moyen'; 
0.527:hi='Fort'")

> tab <- table(zscore,credit2$Cible)

> cbind(prop.table(tab,1), addmargins(tab,2))

0          1   0   1 Sum

Faible 0.9391892 0.06081081 278  18 296

Fort   0.3316832 0.66831683  67 135 202

Moyen  0.7071713 0.29282869 355 147 502
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Grille de score
� On peut transformer un modèle logistique en une grille de score avec pour chaque 

modalité un nombre de points ≥ 0
� d’autant plus élevé que la modalité correspond à un profil plus risqué

� et normalisé pour que chaque dossier ait un nombre total de points compris entre 0 et 100

� La transcription d’un modèle sous forme de « grille de score » est courante en credit scoring

� On parle de scorecard

� Avec des variables qualitatives ou discrétisées, et un coefficient par modalité, il suffit de :

� substituer le logit à la probabilité 
4567/*

��4567/* comme valeur du score

� puis normaliser le logit en sorte qu’il soit compris entre 0 et 100 (ou 1000 pour limiter l’effet des 
arrondis)

� Dans cette normalisation du logit, les coefficients de la régression logistique sont remplacés 
par de nouveaux coefficients, appelés « nombres de points », associés chacun à une modalité

� Le nombre de points est parfaitement corrélé au score logistique en termes de rangs 
(corrélation de Spearman = 1) et son pouvoir discriminant est exactement le même, 

puisque le classement des individus est conservé par la fonction croissante 
48

��48

� Donc l’aire sous la courbe ROC de la grille de score est égale à celle du score logistique
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Calcul de la grille de score
� Pour chaque variable qualitative ou discrète Xj, on note cjk le coefficient du modèle 

associé à la ke modalité, et aj et bj ses coefficients minimum et maximum dans la 
régression logistique :
� 9: =  min� >:� et ?: =  max� >:�

� On calcule ensuite le poids total sur l’ensemble des variables : #B =  ∑ ?: − 9::
� À chaque modalité k de Xj est associé un nombre de points égal à : 100 × DE�0 FE

G(
� En présence de variables Xl quantitatives, la grille est plus complexe à établir : le poids 

total doit prendre en compte le coefficient �H , le minimum IH et le maximum JH de 
chaque variable Xl :

� #B =  ∑ ?: − 9:: +  ∑ �H JH − IHH

� À une valeur x correspond alors un nombre de points : 100 × �5 K0L5
G(

� La complexité vient de ce que le nombre de points n’est alors pas directement donné 
mais doit être calculé pour chaque valeur x
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Calcul de la grille de score avec R I
� La fonction glm ne fournit pas directement un data frame contenant une colonne pour les 

variables (facteurs), une pour leurs modalités (niveaux) et une pour leurs coefficients  nous 
devons le créer

� La composante xlevels de l’objet résultat est une liste contenant ses niveaux pour chaque 
facteur du modèle
> logit$xlevels

$Comptes

[1] "CC [0-200 euros[" "CC < 0 euros"     "CC > 200 euros"   "Pas de compte"   

$Historique_credit

[1] "Crédits en impayé"                      "Crédits passés sans retard"             
"Pas de crédits ou en cours sans retard"

$Duree_credit

[1] "(0,15]"   "(15,36]"  "(36,Inf]"

$Age

[1] "(0,25]"   "(25,Inf]"

$Epargne

[1] "< 500 euros"                "Pas épargne ou > 500 euros"

$Garanties

[1] "Avec garant" "Sans garant"

$Autres_credits

[1] "Aucun crédit extérieur" "Crédits extérieurs"
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Calcul de la grille de score avec R II
� Avec unlist(logit$xlevels), on concatène dans un vecteur les différents objets de la 

liste, les facteurs, dont avec names(unlist(logit$xlevels)) on ne conserve que les 
noms
> names(unlist(logit$xlevels))

[1] "Comptes1"           "Comptes2"           "Comptes3"          

[4] "Comptes4"           "Historique_credit1" "Historique_credit2"

[7] "Historique_credit3" "Duree_credit1"      "Duree_credit2"     

[10] "Duree_credit3"      "Age1"               "Age2"              

[13] "Epargne1"           "Epargne2"           "Garanties1"        

[16] "Garanties2"         "Autres_credits1"    "Autres_credits2"

� On supprime ensuite avec gsub les chiffres suffixant les noms de variables
> VARIABLE=c("", gsub("[0-9]", "", names(unlist(logit$xlevels))))

> VARIABLE

[1] ""                  "Comptes"           "Comptes"           "Comptes"           "Comptes"          

[6] "Historique_credit" "Historique_credit" "Historique_credit" "Duree_credit"      "Duree_credit"     

[11] "Duree_credit"      "Age"               "Age"               "Epargne"           "Epargne"          

[16] "Garanties"         "Garanties"         "Autres_credits"    "Autres_credits"

� Extraction des modalités
> MODALITE=c("",unlist(logit$xlevels))

> MODALITE

Comptes1                                 Comptes2 

""                       "CC [0-200 euros["                           "CC < 0 euros" 

Comptes3                                 Comptes4                       Historique_credit1

…

Florian Pothin Machine Learning supervisé avec R Page 14/106
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Calcul de la grille de score avec R III
� On concatène ensuite variables et modalités dans une expression NOMVAR

> names = data.frame(VARIABLE, MODALITE, NOMVAR=c("(Intercept)", 
paste(VARIABLE,MODALITE,sep="")[-1]))

� On récupère ensuite les coefficients du modèle dans un data frame regression que l’on va 
fusionner avec le précédent, pour avoir pour chaque coefficient la variable et la modalité qui lui 
correspondent
� à noter que la fonction as.numeric ne récupère que les valeurs numériques
> (regression=data.frame(NOMVAR=names(coefficients(logit)), 
COEF=as.numeric(coefficients(logit))))

NOMVAR       COEF

1                                              (Intercept) -0.5797981

2                                      ComptesCC < 0 euros  0.1584002

3                                    ComptesCC > 200 euros -1.3485320

4                                     ComptesPas de compte -1.5136834

5              Historique_creditCrédits passés sans retard -1.5873249

6  Historique_creditPas de crédits ou en cours sans retard -0.8970474

7                                      Duree_credit(15,36]  0.5766696

8                                     Duree_credit(36,Inf]  1.5115586

9                                              Age(25,Inf] -0.4507556

10                       EpargnePas épargne ou > 500 euros -1.0999919

11                                    GarantiesSans garant  1.3194937

12                        Autres_creditsCrédits extérieurs  0.5587985
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Calcul de la grille de score avec R IV
� La fusion des deux data frames se fait sur 

la colonne qu’elles ont en commun : 
NOMVAR
� pour un autre choix, il faudrait spécifier la 

clé par un by

� On élimine NOMVAR du résultat par [-1] 
(NOMVAR est la première colonne) et 
on remplace les valeurs manquantes dans 
les coefficients (ceux des modalités de 
référence) par 0

� Comme ces coefficients des modalités de 
référence n’apparaissent pas dans le data 
frame regression, il faut spécifier l’option 
all.x=TRUE pour que les lignes 
correspondantes soient ajoutées lors du 
merge (elles sont présentes dans le data 
frame names)

> param = merge(names, regression, all.x=TRUE)[-1]

> param$COEF[is.na(param$COEF)] <- 0 

> param

VARIABLE                               MODALITE       COEF

1                                                           -0.5797981

2                Age                                 (0,25]  0.0000000

3                Age                               (25,Inf] -0.4507556

4     Autres_credits Aucun crédit extérieur  0.0000000

5     Autres_credits Crédits extérieurs  0.5587985

6            Comptes                       CC [0-200 euros[  0.0000000

7            Comptes                           CC < 0 euros  0.1584002

8            Comptes                         CC > 200 euros -1.3485320

9            Comptes                          Pas de compte -1.5136834

10      Duree_credit (0,15]  0.0000000

11      Duree_credit (15,36]  0.5766696

12      Duree_credit (36,Inf]  1.5115586

13           Epargne < 500 euros  0.0000000

14           Epargne Pas épargne ou > 500 euros -1.0999919

15         Garanties                            Avec garant  0.0000000

16         Garanties                            Sans garant  1.3194937

17 Historique_credit Crédits en impayé  0.0000000

18 Historique_credit Crédits passés sans retard -1.5873249

19 Historique_credit Pas de crédits ou en cours sans retard -0.8970474
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Calcul de la grille de score avec R V
� On crée ensuite un data frame qui contient le coefficient minimum de chaque variable, un autre 

qui contient le coefficient maximum, puis on les fusionne
> mini=aggregate(data.frame(min = param$COEF), by = list(VARIABLE = param$VARIABLE), min)

> maxi=aggregate(data.frame(max = param$COEF), by = list(VARIABLE = param$VARIABLE), max)

> total = merge(mini,maxi)

> total$diff = total$max - total$min

> total

VARIABLE        min        max      diff

1                   -0.5797981 -0.5797981 0.0000000

2               Age -0.4507556  0.0000000 0.4507556

3    Autres_credits 0.0000000  0.5587985 0.5587985

4           Comptes -1.5136834  0.1584002 1.6720836

5      Duree_credit 0.0000000  1.5115586 1.5115586

6           Epargne -1.0999919  0.0000000 1.0999919

7         Garanties  0.0000000  1.3194937 1.3194937

8 Historique_credit -1.5873249  0.0000000 1.5873249

� Puis on calcule le poids total qui servira à normaliser le poids de chaque modalité
> poids_total = sum(total$diff)

> poids_total

[1] 8.200007
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Calcul de la grille de score avec R VI
� On fusionne ensuite sur la colonne VARIABLE le data frame param avec le data frame mini pour 

ajouter en face de chaque modalité le coefficient minimum de la variable de cette modalité
� On calcule la différence entre le coefficient de chaque modalité et le coefficient minimum de la 

variable, puis le poids de la modalité
> grille = merge(param, mini, all.x=TRUE)

> grille$delta = grille$COEF - grille$min

> grille$POIDS = round((100*grille$delta) / poids_total)

� On affiche enfin la grille, après suppression de la ligne sans nom de variable, qui correspond à la 
constante
> grille[order(grille$VARIABLE,grille$MODALITE)[which(VARIABLE!="")], c("VARIABLE","MODALITE","POIDS")]

VARIABLE                               MODALITE POIDS

2                Age                                 (0,25]     5

3                Age                               (25,Inf]     0

4     Autres_credits Aucun crédit extérieur     0

5     Autres_credits Crédits extérieurs     7

6            Comptes                       CC [0-200 euros[    18

7            Comptes                           CC < 0 euros    20

8            Comptes                         CC > 200 euros     2

9            Comptes                          Pas de compte     0

10      Duree_credit (0,15]     0

11      Duree_credit (15,36]     7

12      Duree_credit (36,Inf]    18

13           Epargne < 500 euros    13

14           Epargne Pas épargne ou > 500 euros     0

15         Garanties                            Avec garant     0

16         Garanties                            Sans garant    16

17 Historique_credit Crédits en impayé    19

18 Historique_credit Crédits passés sans retard     0

19 Historique_credit Pas de crédits ou en cours sans retard     8
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Application de la grille de score I
� On transforme la grille de score en une chaîne de caractères que la fonction 
parse transforme en une ligne de code R, que la fonction eval évalue, 
calculant ainsi le nombre de points de chaque dossier
> card <- function(base,i){

+ noquote(paste0("((",base,"$",grille[i,"VARIABLE"],"=='",grille[i,"MODALITE"],"')*",grille[i,"POIDS"],")"))

+ }

> card("credit2",2)

[1] ((credit2$Age=='(0,25]')*5)

> scorecard <- rbind(sapply(2:nrow(grille), function(x) card("credit2",x)))

> scorecard <- noquote(paste(scorecard, collapse = '+'))

> scorecard

[1] ((credit2$Age=='(0,25]')*5)+((credit2$Age=='(25,Inf]')*0)+((credit2$Autres_credits=='Aucun crédit 
extérieur')*0)+ ((credit2$Autres_credits=='Crédits extérieurs')*7)+ …

> pred.grille <- eval(parse(text=scorecard))

� On vérifie que l’on obtient des nombres de points, quasiment parfaitement 
corrélés à la note du score logit, la liaison étant donnée par une fonction en S
> head(pred.grille,10)

[1] 36 78 29 59 64 31 31 62 24 54

> cor(pred.grille,pred.logit,method="spearman")

[1] 0.9995231

> plot(pred.grille,pred.logit)
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Application de la grille de score II
� On peut déterminer des tranches du nombre de points, comme pour la note 

de score, et les seuils précédents de 0,11 et 0,527 de la note de score 
correspondent ici aux seuils de 37 et 63 points
> plot(pred.grille,pred.logit)

> q <- quantile(pred.grille, seq(0, 1, by=0.05))

> qscore <- cut(pred.grille, q)

> tab <- table(qscore, credit2$Cible)

> ti <- prop.table(tab,1)[,2] # affichage % en ligne

> old <- par(no.readonly = TRUE)

> par(mar = c(7, 4, 2, 0))

> barplot(as.numeric(ti), col=gray(0:length(ti)/length(ti)),

+ names.arg=names(ti), ylab='Taux impayés', ylim=c(0,1), cex.names = 0.8, las=3)

> abline(v=c(7.3,19.3),col="red")

> par(old)

> zscore <- recode(pred.grille, "lo:37='Faible'; 37:63='Moyen'; 63:hi='Fort'")

> tab <- table(zscore,credit2$Cible)

> cbind(prop.table(tab,1), addmargins(tab,2))

0          1   0   1 Sum

Faible 0.9391892 0.06081081 278  18 296

Fort   0.3316832 0.66831683  67 135 202

Moyen  0.7071713 0.29282869 355 147 502
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31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 167

Sélection pas à pas I
� Le package stats contient une fonction step qui réalise la sélection pas à pas des variables en cherchant à 

minimiser un critère pénalisé du type AIC ou BIC

� La fonction step est associée à la fonction glm et peut donc être utilisée pour n’importe quel modèle linéaire 
généralisé, comme par exemple un modèle de régression linéaire ou de régression logistique

� La fonction step peut être utilisée pour la sélection ascendante (forward), descendante (backward), ou 
stepwise (both) (sélection ascendante avec suppression possible d’une variable déjà entrée dans le modèle)

� Pour une sélection pas à pas ascendante, nous partons du modèle minimal
> logit <- glm(Cible~1, data=train, family=binomial(link = "logit"))
> summary(logit)

Call:
glm(formula = Cible ~ 1, family = binomial(link = "logit"), data = train)

Deviance Residuals: 
Min       1Q   Median 3Q      Max  

-0.8451  -0.8451  -0.8451   1.5511   1.5511  

Coefficients:
Estimate Std. Error z value Pr(>|z|)    

(Intercept) -0.84587    0.08453  -10.01   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 814.01  on 665  degrees of freedom
Residual deviance: 814.01  on 665  degrees of freedom
AIC: 816.01

Florian Pothin Machine Learning supervisé avec R Page 21/106
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Sélection pas à pas II
� La fonction step permet de spécifier le modèle initial, la direction ascendante de la sélection, l’affichage 

(trace) des étapes de la sélection, la plage (scope) de modèles examinée, et le multiple k du nombre d de 
degrés de liberté dans la pénalisation ajoutée à la déviance –2 log(vraisemblance)

� Cette pénalisation vaut 2.d pour le critère d’Akaïké (AIC) et log(effectif).d pour le critère de Schwartz (BIC), et 
on peut spécifier k = 2 ou k = log(nombre de lignes du data frame), ou encore d’autres valeurs

� Ici on a choisi le BIC (mais dans ses sorties la fonction step écrit AIC dans tous les cas)
> predicteurs <- -grep('(Cle|Cible)', names(train))
> formule <- as.formula(paste("y ~ ", paste(names(train[,predicteurs]), collapse="+")))
> formule
y ~ Comptes + Duree_credit + Historique_credit + Objet_credit + 

Montant_credit + Epargne + Anciennete_emploi + Taux_effort + 
Situation_familiale + Garanties + Anciennete_domicile + Biens + 
Age + Autres_credits + Statut_domicile + Nb_credits + Type_emploi + 
Nb_pers_charge + Telephone

� On teste les modèles compris entre le modèle initial (= constante) et le modèle contenant tous les prédicteurs

� Le BIC du modèle réduit à la constante vaut 820,51, et introduire la variable « Comptes » dans le modèle fait 
baisser le BIC à 743,90
> selection <- step(logit, direction="forward", trace=TRUE, k = log(nrow(train)), 
scope=list(upper=formule))

Start:  AIC=820.51
Cible ~ 1

Df Deviance AIC
+ Comptes              3   717.90 743.90
+ Historique_credit 2   769.66 789.16
…
+ Taux_effort 3   812.35 838.36
+ Type_emploi 3   812.88 838.88
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Sélection pas à pas III
� Le BIC du modèle contenant la constante et la variable « comptes » vaut 743,90 et c’est ensuite l’historique de 

crédit qui fait le plus baisser le BIC, à 728,98

� Les lignes au-dessus de <none> correspondent aux variables susceptibles de procurer un BIC inférieur à celui 
du modèle atteint à cette étape, et donc d’être intégrées au modèle

� Quant à la déviance = 717,90 elle ne peut bien sûr que baisser à chaque ajout d’une variable dans le modèle
Step:  AIC=743.9
Cible ~ Comptes

Df Deviance AIC
+ Historique_credit 2   689.97 728.98
+ Duree_credit 2   694.31 733.31
+ Epargne 1   701.77 734.28
+ Montant_credit 1   705.04 737.55
+ Autres_credits 1   710.36 742.86
<none>                     717.90 743.90
+ Garanties            1   711.41 743.92
+ Biens                2   707.53 746.53
+ Age                  1   715.54 748.04
+ Statut_domicile 1   715.76 748.27
+ Nb_pers_charge 1   716.54 749.04
+ Situation_familiale 2   710.66 749.66
+ Telephone 1   717.89 750.40
+ Anciennete_emploi 2   711.56 750.56
+ Objet_credit 3   708.80 754.31
+ Anciennete_domicile 3   708.82 754.33
+ Nb_credits 3   713.65 759.16
+ Taux_effort 3   714.41 759.92
+ Type_emploi 3   717.49 763.00
…
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Sélection pas à pas IV
� On s’arrête quand le BIC ne diminue

� Quand le modèle contient déjà les variables « comptes », « historique de crédit », « épargne » et 
« durée de crédit », le BIC vaut 710,7

� On voit que la variable « Garanties » peut faire baisser le BIC à 709,80 mais que l’ajout d’une 
variable supplémentaire (« autres crédits ») fait remonter le BIC à 713,15
Step:  AIC=710.7

Cible ~ Comptes + Historique_credit + Epargne + Duree_credit

Df Deviance AIC

+ Garanties            1   644.79 709.80

<none>                     652.19 710.70

+ Autres_credits 1   648.14 713.15

+ Age                  1   648.94 713.96

+ Montant_credit 1   650.93 715.94

+ Situation_familiale 2   644.47 715.99

+ Nb_pers_charge 1   651.12 716.13

+ Statut_domicile 1   651.90 716.91

+ Telephone 1   652.01 717.03

+ Anciennete_emploi 2   647.55 719.06

+ Objet_credit 3   641.20 719.21

+ Biens                2   649.10 720.62

+ Anciennete_domicile 3   643.53 721.54

+ Taux_effort 3   648.36 726.38

+ Nb_credits 3   649.07 727.09

+ Type_emploi 3   652.15 730.16  
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Sélection pas à pas V
� On a ajouté les garanties au modèle et la fonction s’arrête car il n’est plus possible de diminuer le BIC

Step:  AIC=709.8

Cible ~ Comptes + Historique_credit + Epargne + Duree_credit + Garanties

Df Deviance AIC

<none>                     644.79 709.80

+ Autres_credits 1   639.87 711.39

+ Age                  1   641.30 712.81

+ Nb_pers_charge 1   643.59 715.10

+ Situation_familiale 2   637.17 715.18

+ Montant_credit 1   643.84 715.35

+ Telephone 1   644.28 715.79

+ Statut_domicile 1   644.60 716.12

+ Objet_credit 3   633.81 718.32

+ Anciennete_emploi 2   640.61 718.63

+ Anciennete_domicile 3   634.93 719.45

+ Biens                2   643.21 721.23

+ Taux_effort 3   641.24 725.76

+ Nb_credits 3   641.43 725.95

+ Type_emploi 3   644.72 729.23  

� Le critère BIC nous a conduit à sélectionner pas à pas 5 variables
� Le critère AIC impose une pénalisation moins sévère et nous conduit à sélectionner 12 variables
� On peut aussi procéder à une sélection descendante :

� le modèle initial contient toutes les variables
� on n’a pas besoin de spécifier scope=list(upper=formule)) puisque le modèle maximal est le modèle initial, mais 

on peut spécifier un modèle minimal (option scope=list(lower=~Comptes+…) pour contraindre certaines variables à 
apparaître dans le modèle

> logit <- glm(Cible~., data=train, family=binomial(link = "logit"))

> selection <- step(logit, direction="backward", trace=TRUE, k = log(nrow(train)))
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Test de toutes les combinaisons de variables
� R permet de tester facilement tout un ensemble de combinaisons de variables (les calculs peuvent être très longs !)

� Ensemble des combinaisons de variables explicatives (ici : combinaisons de 1 à 5 variables)
> pos <- 20 # position variable à expliquer

> combis <- unlist(sapply(1:5, function(x) apply(combn(names(train)[-pos], x), 2, paste, collapse = " + ")))

� Calcul de l’ensemble des modèles logit s’appuyant sur ces combinaisons de variables (peut être très long)
> lst.model <- lapply(combis, function(x) glm(as.formula(paste("Cible ~", x)), data = train, family=binomial))

� Nombre de modèles
> length(lst.model)

[1] 16663

� Application de la liste des modèles à un échantillon de validation
> lst.pred <- lapply(lst.model, function(x) {predict(x, newdata=valid)})

� Calcul de l’aire sous la courbe ROC de ces modèles
> AUC <- sapply(lst.pred, function(x) {auc(valid$Cible,x,quiet=TRUE)})

> resultats <- data.frame(combis, AUC)

� Affichage des aires sous la courbe ROC les plus élevées et des combinaisons correspondantes
> head(resultats[order(resultats[,2], decreasing=T),])

combis       AUC

6339                         Comptes + Objet_credit + Montant_credit + Biens + Age 0.7713889

5723             Comptes + Historique_credit + Objet_credit + Montant_credit + Age 0.7713675

5725 Comptes + Historique_credit + Objet_credit + Montant_credit + Statut_domicile 0.7693376

5722           Comptes + Historique_credit + Objet_credit + Montant_credit + Biens 0.7691453

5036    Comptes + Duree_credit + Historique_credit + Objet_credit + Montant_credit 0.7689103

6360         Comptes + Objet_credit + Montant_credit + Statut_domicile + Telephone 0.7685684
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Régression clusterwise
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Le clustering de modèles
� Régression clusterwise : méthode de recherche simultanée des classes 

et des modèles de chaque classe
� C’est un modèle des moindres carrés ordinaires dans lequel on 

cherche à minimiser la somme des carrés des résidus 
suivante : ∑ ∑ 1�(M) "! − N� + �� ! OP�&�%!&�
� où 1�(M) est la fonction indicatrice de la ke classe

� On peut y parvenir par application de l’algorithme suivant :
� étape 1 : à partir d’une partition initiale, on estime séparément k modèles 

de régression
� étape 2 : chaque observation est affectée à la classe et au modèle 

minimisant le carré du résidu
� étape 3 : une fois toutes les observations reclassées, on a une nouvelle 

partition et on revient à l’étape 2
� Il peut arriver que l’on obtienne des classes de taille < nombre de 

variables  recourir à une régression pénalisée du type ridge
� Package R : flexmix
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Exemple de régression clusterwise I
> set.seed(2)
> x1 <- rnorm(100)
> set.seed(3)
> y1 <- x1 + rnorm(100, sd=0.5)
> set.seed(5)
> y2 <- - x1 + rnorm(100, sd=0.5)
> x <- c(x1,x1)
> y <- c(y1,y2)
> modele <- lm(y ~ x)
> summary(modele)

Call:
lm(formula = y ~ x)

Residuals:
Min       1Q   Median       3Q      Max 

-2.81971 -0.86755  0.02945  0.94792  2.54697 

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.010835   0.083549   0.130    0.897
x           0.005453 0.072350   0.075    0.940

Residual standard error: 1.181 on 198 degrees of freedom
Multiple R-squared:  2.869e-05, Adjusted R-squared:  -0.005022 
F-statistic: 0.00568 on 1 and 198 DF,  p-value: 0.94

� Nous avons obtenu une droite de régression de pente quasiment nulle
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Exemple de régression clusterwise II
� Nous ajustons une régression clusterwise en spécifiant l’existence de 2 classes

> library(flexmix)
> clw <- flexmix(y ~ x, k=2)
> summary(clw)

Call:
flexmix(formula = y ~ x, k = 2)

prior size post>0 ratio
Comp.1 0.501  101    156 0.647
Comp.2 0.499   99    159 0.623

'log Lik.' -218.5194 (df=7)
AIC: 451.0388   BIC: 474.127 

� Les deux classes détectées sont presque de même taille
� Nous retrouvons les pentes correspondant aux deux classes que nous avons créées : l’une proche de 

+1 et l’autre proche de –1
> summary(refit(clw))
$Comp.1

Estimate Std. Error z value Pr(>|z|)    
(Intercept) -0.010514   0.048656 -0.2161   0.8289    
x            0.941763   0.038669 24.3547   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

$Comp.2
Estimate Std. Error z value Pr(>|z|)    

(Intercept)  0.013144   0.050655   0.2595   0.7953    
x           -0.941999   0.040461 -23.2815   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Lien avec la régression logistique

� Une approche courante consiste à se placer dans le cadre des modèles de 
mélanges et à rechercher l’estimateur du maximum de vraisemblance

� Les coefficients β de la régression logistique s’obtiennent à partir des 
fonctions de densité conditionnelles fβ en maximisant la log-vraisemblance 
calculée sur des observations (x1,y1), (x2,y2), …, (xn,yn) : ∑ log T� "!  !⁄%!&�

� Dans un modèle clusterwise, la fonction de densité conditionnelle est une 
somme de plusieurs fonctions ∑ -�T��

P�&� , où -�  est la probabilité a priori de 
la classe k, et il faut estimer les paramètres -� et �� en maximisant la log-
vraisemblance : ∑ log ∑ -�T�� "!  !⁄P�&�%!&�

� La recherche directe des paramètres (-�, …, -P, ��, … , �P) maximisant cette 
fonction devient vite très complexe, même en présence de deux classes 
seulement, car on ne sait pas à quelle classe appartient chaque individu

� L’estimation de ces paramètres est toutefois rendue possible par l’algorithme 
EM (expectation-maximization) de Dempster et al.
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Les arbres de décision
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Principe des arbres de décision
� Les arbres de décision sont une méthode de classification 

hiérarchique descendante supervisée
� Elle est appliquée itérativement pour scinder chaque ensemble 

d’individus en deux (ou plus de deux) sous-ensembles, selon un 
critère le plus lié possible à la variable à expliquer

� L’ensemble initial est constitué de l’ensemble des individus 
(« racine »), scindé en plusieurs sous-ensembles (« nœuds ») qui 
seront chacun scindés (en « nœuds-fils »), etc.

� Les nœuds terminaux sont les « feuilles » et chaque chemin entre la 
racine et une feuille est un ensemble de conditions = une règle

� Dans un arbre de régression, la moyenne de la variable à expliquer 
doit être la plus différente possible d’un nœud à l’autre

� Dans un arbre de classement, la probabilité d’appartenance à l’une 
des classes doit être la plus différente possible d’un nœud à l’autre
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Arbres de régression
� La variable à expliquer Y est continue
� Les arbres de régression sont une alternative à la régression 

linéaire multiple
� Principe :

� la variable Y doit avoir une variance plus faible dans les nœuds fils 
(modalités de la variable explicative créées par la scission) que dans 
le nœud père, la baisse de variance étant la plus importante possible

�  la variable Y doit avoir une moyenne la plus distincte possible d’un 
nœud fils à un autre

� On teste l’hypothèse nulle que la moyenne de la variable à 
expliquer est la même dans chaque nœud fils. On choisit la 
variable explicative, et la scission, pour laquelle la probabilité p
associée au test de Fisher-Snedecor est minimale, et on scinde 
le nœud si p est inférieure au seuil fixé permettant de rejeter 
l’hypothèse nulle
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Noeud 0

Moyenne 3250,141

Ecart type 4330,307

n 163

% 100,0

Prévisions 3250,141

ENERG
Valeur p aj.= 0,000, F= 122,386, 

ddl1= 2, ddl2= 160

PNB

Noeud 1

Moyenne 554,319

Ecart type 479,405

n 69

% 42,3

Prévisions 554,319

ESPER
Valeur p aj.= 0,000, F= 29,878, 

ddl1= 1, ddl2= 67

< =  19

Noeud 2

Moyenne 2407,358

Ecart type 2824,902

n 53

% 32,5

Prévisions 2407,358

(19, 65];  < manquantes>

Noeud 3

Moyenne 8876,463

Ecart type 4388,009

n 41

% 25,2

Prévisions 8876,463

>  65

Noeud 4

Moyenne 322,513

Ecart type 179,728

n 39

% 23,9

Prévisions 322,513

< =  53

Noeud 5

Moyenne 855,667

Ecart type 574,784

n 30

% 18,4

Prévisions 855,667

>  53

Arbre de régression
Ce sont la 
consommation 
d’énergie et 
l’espérance de vie 
qui expliquent le 
mieux le PNB par 
habitant (ou 
l’inverse !)
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Arbre de classement

Catégorie % n
1 32,99 511
0 67,01 1038
Total (100,00) 1549

Noeud 0

Catégorie % n
1 73,93 258
0 26,07 91
Total (22,53) 349

Noeud 2

Catégorie % n
1 45,59 62
0 54,41 74
Total (8,78) 136

Noeud 7
Catégorie % n
1 87,00 87
0 13,00 13
Total (6,46) 100

Noeud 6
Catégorie % n
1 96,46 109
0 3,54 4
Total (7,30) 113

Noeud 5

Catégorie % n
1 21,08 253
0 78,92 947
Total (77,47) 1200

Noeud 1

SURV (Echantillon d'apprentissage)

SEX
Prob. ajustée - valeur=0,0000, Khi-deux=341,5082, ddl=1

0

CLASS
Prob. ajustée - valeur=0,0000, Khi-deux=95,2936, ddl=2

32;01

1

À bord du Titanic
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Classement ou régression par arbre

� Détermination pour chaque nœud de l’ensemble des 
divisions possibles (variables et conditions sur ces 
variables)

� Application d'un critère (C1) permettant de sélectionner 
la meilleure division possible du nœud 

� Application d’un (ou plusieurs) critère(s) d'arrêt (C2) des 
divisions

� Application d’une règle d'affectation de chaque nœud 
terminal
� à une classe de Y si Y est qualitative
� à une valeur de Y si Y est quantitative
�  prédiction de Y pour chaque individu

� Estimation de l’erreur, du coût associé à l'arbre
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Critères d’arrêt

� Le critère d’arrêt (C2) peut combiner plusieurs règles :
� la profondeur de l’arbre a atteint une limite fixée
� ou le nombre de feuilles a atteint un maximum fixé
� ou l’effectif de chaque nœud est inférieur à une valeur fixée en 

deçà de laquelle on estime qu’il ne faut plus diviser un nœud
� ou la division ultérieure de tout nœud provoquerait la naissance 

d’un fils d’effectif inférieur à une valeur fixée
� ou la qualité de l’arbre est suffisante (et en tout cas si tous les 

individus de chaque feuille sont dans la même classe, en 
classement)

� ou la qualité de l’arbre n’augmente plus de façon significative

� Le critère de qualité dépend du type d’arbre
� exemple : la pureté dans l’arbre CART
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Critères de choix de scission d’un nœud

� Le critère du χ2

� lorsque les variables explicatives sont qualitatives
� utilisé dans les arbres CHAID et QUEST

� Les critères basés sur une fonction d’impureté
� pour tous types de variables explicatives
� l’indice de Gini est utilisé dans l’arbre CART
� l’indice Twoing est utilisé dans l’arbre CART lorsque la variable à 

expliquer a ≥ 3 modalités
� l’indice Twoing ordonné est utilisé quand la variable à expliquer est 

ordinale
� l’entropie est utilisée dans les arbres CART, C4.5 et C5.0
� plus les classes sont uniformément distribuées dans un nœud, plus la

fonction d’impureté est élevée ; plus le nœud est pur, plus elle est
basse
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Arbres de classement

� La variable à expliquer Y est une variable nominale (ou ordinale) à k
modalités, définissant k groupes d’individus Gi d’effectifs ni 

� On peut considérer que les probabilités a priori P(Gi) sont :
� toutes égales
� ou égales aux fréquences empiriques ni/n
� ou fixées a priori par une connaissance experte

� Pour tout nœud t, soient P(t/Gi) la probabilité d’être dans le nœud t si 
on est dans la ie classe, P(t) la probabilité du nœud et P(Gi/t) la 
probabilité d’être dans Gi si on est dans t

� On a : P(Gi/t)P(t) = P(t/Gi)P(Gi) (formule de Bayes)
� Dans le 2e cas ci-dessus (P(Gi) = ni/n), on a :

� P(Gi/t) = (ni/n)P(t/Gi)/P(t) = (ni/n)(ni(t)/ni)/(n(t)/n) = ni(t)/n(t)
� proportion d’individus du nœud t qui sont dans Gi = notée plus simplement fi
� c’est le cas le plus fréquent, dans lequel nous nous placerons pour la suite
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Prédiction dans un arbre de classement

� Affectation d’un nœud terminal t au groupe Gi pour lequel P(Gi/t) est 
maximale
� quand P(Gi/t) = ni(t)/n(t)  affectation du nœud t au groupe de plus grand 

effectif dans t

� Affectation d’un individu :
� d’abord à un nœud t, en fonction des valeurs de ses variables explicatives

� ensuite au Gi auquel est affecté le nœud t

� avec une prédiction P(Gi/t) (la même pour tous les individus du nœud)

� On peut introduire des coûts de mauvais classement : Cij = coût 
d’affectation d’un individu à Gi alors qu’il est dans Gj

� on a Cii = 0 et le cas le plus fréquent est celui où Cij = 1 pour tous i ≠ j

� Le coût d’affectation du nœud t à Gi est ∑ W!:X Y:/B�:&�
� On affecte alors t au Gi de coût minimal et non au P(Gi/t) maximal
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Fonction d’impureté

� Une fonction d’impureté est une fonction :
� positive, concave, symétrique (elle ne dépend que de la proportion dans

laquelle est présente chaque classe dans le nœud, et ne varie pas si l’on
permute les classes par rapport aux proportions)

� minimale lorsque tous les individus qui composent le nœud appartiennent
à la même classe

� maximale lorsque toutes les classes sont présentes dans la même
proportion dans le nœud

� Principales fonctions d’impureté :
� indice de diversité de Gini
� entropie
� plus petite proportion d’une classe dans un nœud (fonction non dérivable

)
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Indice de diversité de Gini

� Indice de Gini d’un nœud = 1 – Σifi² = Σi≠j fifj = Σi≠j P(Gi/t)P(Gj/t)
� où les fi = ni(t)/n(t), i = 1 à p, sont les fréquences relatives dans le nœud des p

classes à prédire (variable à expliquer), égales à P(Gi/t) dans le cas le plus
fréquent

� = probabilité que 2 individus, choisis aléatoirement dans un nœud,
appartiennent à 2 classes différentes

� Plus les classes sont uniformément distribuées dans un nœud,
plus l’indice de Gini est élevé ; plus le nœud est pur, plus l’indice
de Gini est bas
� avec 2 classes, l’indice va de 0 (nœud pur) à 0,5 (mélange maximal) – avec 3

classes, l’indice va de 0 à 2/3

� Chaque scission en p nœuds fils (d’effectifs n1, n2 … np) doit
provoquer la plus grande hausse de la pureté, donc la plus
grande baisse de l’indice de Gini. Autrement dit, il faut
minimiser : Gini fils =  ∑ %/

% Gini(M4 fils)G
!&�

� Par concavité, on a toujours Gini(père) ≥ Gini(fils)
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Mécanisme de scission des nœuds avec Gini

Article Prix Achat

1 125 N

2 100 N

3 70 N

4 120 N

5 95 O

6 60 N

7 220 N

8 85 O

9 75 N

10 90 O

(exemple : 
catalogue 
avec prix 
des articles 
et achat 
O/N)
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31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 191

Mécanisme de scission des nœuds avec Gini

Achat N N N O O O N N N N

Prix 60 70 75 85 90 95 100 120 125 220

Seuil 55 65 72,5 80 87,5 92,5 97,5 110 122,5 172,5 230

≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ > ≤ >

O 0 3 0 3 0 3 0 3 1 2 2 1 3 0 3 0 3 0 3 0 3 0

N 0 7 1 6 2 5 3 4 3 4 3 4 3 4 4 3 5 2 6 1 7 0

Gini 0,420 0,400 0,375 0,343 0,417 0,400 0,300 0,343 0,375 0,400 0,420

6/10.(1-0,5²-0,5²)+4/10.(1-0²-1²)=6/10*0,5=0,3 À noter tous les indices ≥ 0,42 indice de la racine
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Entropie de Shannon

� Entropie (ou « information » ou « déviance ») d’un nœud t

= – Σi fi.log(fi) = – Σi P(Gi/t)log(P(Gi/t))
� où les fi, i = 1 à p, sont les fréquences relatives dans le nœud des p classes

à prédire

� Plus les classes sont uniformément distribuées dans un nœud,
plus l’entropie est élevée ; plus le nœud est pur, plus l’entropie
est basse
� elle vaut 0 lorsque le nœud ne contient qu’une seule classe

� C’est une fonction d’impureté comme l’indice de Gini et elle
produit des scissions peu différentes de l’indice de Gini

� Comme précédemment, il faut minimiser l’entropie dans les
nœuds-fils
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Comparaison des fonctions d’impureté

� L’entropie est toujours plus grande que l’indice de Gini, et leurs 
valeurs maximales sont 1-(1/k) pour l’indice de Gini et –log(–
1/k) pour l’entropie (pour k classes)

� Elles valent par exemple 0,5 et environ 0,69 pour k = 2

� On peut mettre à l’échelle ces deux courbes f(f1) en multipliant 
l’entropie par [1-(1/k)] / [ –log(–1/k)]

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,2 0,4 0,6 0,8 1

Indice de Gini

Entropie

Min

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 0,2 0,4 0,6 0,8 1
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Entropie
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Utilité de la concavité

� La concavité d’une fonction f  si A et B sont deux points du graphe G(f) de
la fonction, le segment [A,B] est entièrement situé sous G(f)

� T B + 1 − B " ≥ BT  + 1 − B T " , B ∈ [0,1]
� La concavité assure la diminution systématique de l’impureté lorsque l’on

scinde un nœud père en plusieurs nœuds-fils
� Autrement dit, on a toujours (sachant que n = ng + nd) :

Gini père ≥ e f!
f YMfM M4 TMgh

G

!&�

YMfM f�
f T�

� +  fi
f T�i  ≥  f�

f YMfM T�
� + fi

f YMfM T�i

� La diminution systématique de l’impureté garantit la convergence du 
processus de scission successive des nœuds

� Il est toutefois prévisible que, comme pour tout modèle trop complexe, un 
arbre de profondeur maximale ne puisse que conduire au sur-apprentissage 
 nécessité d’une stratégie de limitation de la complexité (voir plus loin)
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Choix d’une fonction d’impureté 1/2

� Pour l’optimisation, préférer une fonction dérivable comme l’indice 
de Gini ou l’entropie

� Ils décroissent plus fortement que le taux d’erreur quand les nœuds 
sont plus purs

� Exemple de 1000 individus dont 500 appartiennent à chaque classe, 
avec un arbre T1 répartissant ces individus en (400,100) dans un 
nœud et (100,400) dans un autre, et un arbre T2 répartissant ces 
individus en (315,25) dans un nœud et (185,475) dans un autre

� T2 est préférable car il conduit à un premier nœud très pur
� On peut vérifier que l’on a :

� indice de Gini = 0,32, entropie = 0,50 et taux d’erreur = 0,20 pour T1
� indice de Gini = 0,31, entropie = 0,48 et taux d’erreur = 0,21 pour T2

� Le critère du taux d’erreur conduirait donc à retenir T1 alors que 
l’arbre T2 que nous préférons est retenu par l’indice de Gini et 
l’entropie
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Choix d’une fonction d’impureté 2/2

� Discussions sur le choix de l’indice de Gini ou l’entropie

� Breiman, Friedman, Olshen et Stone préfèrent l’indice de Gini
� tout en reconnaissant que le choix d’un critère ou d’un autre influe 

peu sur l’arbre produit, et moins en tout cas que la stratégie d’élagage

� Mais l’indice de Gini :
� est simple et donc rapide à calculer (un simple produit 2f1f2 dans le 

cas de deux classes)

� permet d’intégrer naturellement des coûts Cij de mauvais classement 
dans la formule ∑ W!:T!T:!j:

� limite plus que l’entropie l’apparition de « end cut splits » (scissions 
déséquilibrées où l’un des nœuds fils est très pur mais très petit)
� car l’entropie décroît plus fortement que l’indice de Gini quand les nœuds 

sont plus purs (voir précédemment)
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Cas des arbres de régression

� Impureté = variance(Y) dans le nœud : l’objectif de baisse de 
l’impureté se traduit en objectif de variance la plus faible 
possible dans les nœuds-fils (variance intra-classe)

� Réduction de l’impureté = variance totale (nœud-père) –
variance intra-classe (intra nœuds-fils) = variance inter-classe
(inter-nœuds fils)

� Prédiction : les observations d'un nœud terminal se voient 
affecter comme valeur de Y la moyenne dans le nœud

� Coût (erreur) d’un nœud t = variance de Y dans t = impureté(t)

� On peut calculer la somme des coûts dans les nœuds (pondérés 
par les effectifs), et la normaliser par la variance de Y dans la 
racine
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Les principaux arbres de décision 1/2

� CHAID (CHi-Square Automation Interaction Detection)
� utilise le test du χ2 pour déterminer la variable la plus significative

pour chaque scission et le découpage de ses modalités

� adapté à l’étude des variables explicatives discrètes (les variables
explicatives continues peuvent être discrétisées)

� QUEST
� variable à expliquer nominale

� utilise le test du χ2 comme CHAID mais pour produire des
scissions binaires comme CART
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Les principaux arbres de décision 2/2

� CART (Classification and Regression Tree)
• cherche à maximiser la pureté des nœuds

• adapté à l’étude de tout type de variables explicatives

• dispositif d’élagage

• utilisation de variables équidivisantes pour gérer les valeurs manquantes

• généralement binaire (chaque nœud a au plus deux nœud-fils)

� C5.0
• cherche à maximiser le gain d’information réalisé en affectant chaque

individu à une branche de l’arbre

• adapté à l’étude de tout type de variables explicatives

• transformation de l’arbre en règles qui permet une simplification par
suppression des règles redondantes
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Arbre CHAID – Algorithme 1/2

� Cet arbre est de conception plus ancienne (principe : 1975,
Hartigan ; algorithme : 1980, Kass)

� Il traite directement les variables explicatives discrètes ou 
qualitatives, et discrétise automatiquement les variables 
explicatives continues

� La variable à expliquer est qualitative à k modalités
� Utilise plusieurs fois la statistique du χ2 :

1. On construit pour chaque prédicteur Xi, le tableau de 
contingence Xi x Y et on effectue les étapes 2 et 3

2. On sélectionne la paire de modalités de Xi dont le sous-tableau 
(2 x k) a le plus petit χ². Si ce χ² n’est pas significatif (p-value > à 
un seuil fixé), on fusionne les 2 modalités et on répète cette 
étape jusqu’à ce que toutes les paires de modalités (simples ou 
composées) aient un χ² significatif ou jusqu’à ce qu’il n’y ait plus 
qu’une seule modalité. Si Xi est ordinale ou quantitative, seules 
sont considérées les paires de modalités adjacentes
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Arbre CHAID – Algorithme 2/2
3. Éventuellement, pour chaque modalité composée d’au moins 3 

modalités originales, on détermine la division binaire au χ² le plus 
grand. S’il est significatif, on effectue cette division (même si le χ² de 
(A,B) xY n’était pas significatif, ni celui de (A∪B,C) xY, le χ² de 
(A,B∪C) xY pourrait être significatif)

4. On calcule la significativité (p-value associée au χ²) de chaque 
prédicteur Xi dont les modalités ont été précédemment regroupées et 
on retient le prédicteur le plus significatif. Si la p-value du χ² est 
inférieure au seuil choisi, on peut diviser le nœud en autant de nœuds-
fils qu’il y a de modalités après regroupement. Si la p-value dépasse le 
seuil spécifié, le nœud n’est pas divisé

� Ajustement de Bonferroni
� Lors du calcul de la significativité de tous les prédicteurs (étape 4),

on peut multiplier la valeur de la probabilité du χ² par le coefficient
de Bonferroni, qui est le nombre de possibilités de regrouper les m
modalités d’un prédicteur en g groupes (1 ≤ g ≤ m)

� Ce calcul permet d’éviter la surévaluation de la significativité des
variables à modalités multiples
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Arbre CHAID – Caractéristiques

� CHAID traite l’ensemble des valeurs manquantes comme une 
seule catégorie (qu’il fusionne éventuellement avec une autre)
� pas d’utilisation de variables équidivisantes

� Il n’est pas binaire et produit des arbres souvent plus larges que
profonds
� utile pour la discrétisation de variables continues

� Le nombre de nœuds fils dépend des seuils fixés pour le test du
χ²

� Pas de dispositif d’élagage : la construction de l’arbre s’achève
dès que les critères d’arrêt sont rencontrés

� R : package CHAID sur R-Forge
> install.packages("CHAID", repos="http://R-Forge.R-
project.org")

> library("CHAID")
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Discrétisation avec CHAID 1/4

� Supposons que nous voulions prédire une variable cible à l’aide
de certaines variables explicatives, dont l’âge, et que nous
voulions découper l’âge en classes pour ces raisons :
� prise en compte de la non-monotonie ou non-linéarité de la réponse en

fonction de l’âge

� suppression du problème des extrêmes

� modèle plus robuste

� Nous allons découper l’âge en 10 tranches (ou plus, si le
nombre d’individus est grand) et regarder le % d’individus dans
la cible pour chaque classe d’âge
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Discrétisation avec CHAID 2/4

127 81 208

61,1% 38,9% 100,0%

104 126 230

45,2% 54,8% 100,0%

93 101 194

47,9% 52,1% 100,0%

113 99 212

53,3% 46,7% 100,0%

93 94 187

49,7% 50,3% 100,0%

149 123 272

54,8% 45,2% 100,0%

108 72 180

60,0% 40,0% 100,0%

116 97 213

54,5% 45,5% 100,0%

77 113 190

40,5% 59,5% 100,0%

71 145 216

32,9% 67,1% 100,0%

1051 1051 2102

50,0% 50,0% 100,0%

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

Effectif

% dans tranche d'âge

18-25 ans

25-29 ans

29-32 ans

32-35 ans

35-38 ans

38-40 ans

40-42 ans

42-45 ans

45-51 ans

> 51 ans

tranche d'âge

Total

non oui

cible

Total
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Discrétisation avec CHAID 3/4

Catégorie % n
O 50,00 1051
N 50,00 1051
Total (100,00) 2102

Noeud 0

Catégorie % n
O 63,55 258
N 36,45 148
Total (19,31) 406

Noeud 9
Catégorie % n
O 45,58 485
N 54,42 579
Total (50,62) 1064

Noeud 8
Catégorie % n
O 53,54 227
N 46,46 197
Total (20,17) 424

Noeud 7
Catégorie % n
O 38,94 81
N 61,06 127
Total (9,90) 208

Noeud 6

PROPENS

AGE
Prob. ajustée - valeur=0,0000, Khi-deux=50,4032, ddl=3

>45(32,45](24,32]<=24

� Nous voyons que certaines classes sont proches du point du 
vue du % dans la cible :
� tranches 2 et 3
� tranches 4 à 8
� tranches 9 et 10

� CHAID a fait automatiquement ce que nous avons fait 
manuellement
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Discrétisation avec CHAID 4/4

� Pour la scission de la racine de l’arbre, la variable AGE est 
retenue devant la variable REVENUS car la probabilité associée 
au χ² des REVENUS est plus grande que celle associée à l’AGE

� Si le nombre de degrés de liberté n’est pas le même pour deux 
variables, il faut comparer les p-values et non les χ²

Catégorie % n
O 50,00 1051
N 50,00 1051
Total (100,00) 2102

Noeud 0

Catégorie % n
O 45,71 192
N 54,29 228
Total (19,98) 420

Noeud 12
Catégorie % n
O 53,60 789
N 46,40 683
Total (70,03) 1472

Noeud 11
Catégorie % n
O 33,33 70
N 66,67 140
Total (9,99) 210

Noeud 10

PROPENS

REVENUS
Prob. ajustée - valeur=0,0000, Khi-deux=34,0522, ddl=2

>2667(350,2667]<=350
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Arbre CART
� Décrit dans l'ouvrage classique de Breiman, Friedman, Olshen et 

Stone (1984) : Classification and Regression Trees
� Le critère de division est basé sur une fonction d’impureté
� Optimal : toutes les scissions possibles sont examinées
� Optimal : dispositif d’élagage performant

� l’arbre maximum construit, l’algorithme en déduit une séquence de sous-
arbres par élagages successifs, et retient celui qui optimise un certain critère

� Général : variable à expliquer quantitative ou qualitative
 CART sert à la régression comme au classement

� Général : CART permet la prise en compte de coûts Cij de mauvaise
affectation (d’un individu de la classe j dans la classe i) en les intégrant
dans le calcul de l’indice de Gini ∑ W!:T!T:!j:

� Dans sa version la plus courante, CART est binaire
� pour segmenter moins rapidement les données

� Gère les valeurs manquantes en recourant aux variables
équidivisantes (« surrogate variables »)
� différent de CHAID

� R : packages rpart, tree et rpartOrdinal (Y ordinale)
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Scission avec CART
� La scission de la racine se fait par l’âge, comme avec CHAID, mais

l’arbre binaire est moins équilibré :

� On peut aussi pénaliser les scissions déséquilibrées
� multiplier la baisse d’impureté par un coefficient (pGpD)α dépendant de la

proportion d’individus allant à gauche et de la proportion d’individus
allant à droite, avec α ≥ 0 (0 pour la scission habituelle)

� Ces scissions déséquilibrées sont moins rares avec l’entropie
� CART est apte à détecter rapidement des profils très marqués

Catégorie % n
O 50,00 1051
N 50,00 1051
Total (100,00) 2102

Noeud 0

Catégorie % n
O 63,55 258
N 36,45 148
Total (19,31) 406

Noeud 2
Catégorie % n
O 46,76 793
N 53,24 903
Total (80,69) 1696

Noeud 1

AGE
Taux d'amélioration=0,0088

>45,5<=45,5

Florian Pothin Machine Learning supervisé avec R Page 62/106
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CART et complexité du choix (C1)

� Si une variable explicative qualitative X a un ensemble E de n
valeurs possibles x1, …, xn, toute condition de séparation sur
cette variable sera de la forme

� X ∈ E’, où E’ ⊂ E - {0}

> 2n-1 — 1 conditions de séparation possibles

� Pour une variable explicative continue X, la complexité est liée
au tri des valeurs x1, …, xn de X, puisqu’une fois les variables
dans l’ordre x1 ≤ … ≤ xn, il suffit de trouver l’indice k tel que la
condition

� X ≤ moyenne (xk , xk+1)

soit la meilleure (selon le critère choisi, par exemple Gini)
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Variables équiréductrices

� Variables assurant la réduction de l’impureté des nœuds la plus 
proche possible de celle de la variable retenue

� Variables « concurrentes » (« primary splits ») utilisées lors de 
la construction de la variable pour repérer d’éventuelles 
variables plus intéressantes que celles retenues en première 
approche
� plus fiables

� mieux acceptées par les experts métiers

� moins coûteuses à collecter
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Variables équidivisantes

� Variables répartissant les individus de la façon la plus proche 
possible de celle de la variable retenue avec sa scission
� si le nœud est scindé par la condition {X < x}, on recherche les 

variables équidivisantes avec des arbres de profondeur 1 ayant la 
condition {X < x} pour variable à expliquer (et sans coûts de 
mauvais classement)

� soit n le nombre d’individus, n1 le nombre d’individus bien classés par 
l’arbre précédent et n0 le nombre d’individus bien classés par la règle 
majoritaire :

� la concordance de la variable équidivisante est (n1-n0)/(n-n0)

� on ne s’intéresse qu’aux variables équidivisantes de concordance > 0

� Variables « de rechange » ou « suppléantes » (« surrogate
splits ») utilisées en cas de valeur manquante pour un individu 
de la variable retenue
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Variables équidivisantes : exemple

� Si la scission d’un nœud est produite par la condition {X < x}, 
et si une variable équidivisante est {Y < y}, avec un croisement

� la concordance vaut (120-84)/(144-84) = 0,6
� C’est mieux que la règle de la majorité consistant à affecter 

tous les individus à la modalité {X ≥ x}
� On ne calcule pas la concordance 120/144 (0,833) car on veut 

mesurer le gain de concordance par rapport à la règle 
majoritaire
� ainsi un bon classement de 72 individus sur 144 n’est pas affecté d’un 

taux de 0,5 mais de -0,2 (72-84/144-84) car il est inférieur à la règle 
majoritaire qui classe bien 84 individus

Y < y Y ≥ y

X < x 40 20

X ≥ x 4 80
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Traitement des valeurs manquantes
� Apprentissage :

� un individu participe si sa variable à expliquer et au moins une variable 
explicative ont une valeur non manquante

� l’indice de Gini de la scission {X < x} d’un nœud est calculé sans prendre 
en compte les individus avec X manquant

� on ajuste les nk/n pour que leur somme = 1
� Application :

� si X est manquant pour un individu, il :
� n’est pas affecté à un nœud-fils et reste au niveau du père (paramètre 
usesurrogate = 0 de rpart)

� est affecté à un nœud-fils à l’aide d’une variable équidivisante (paramètre 
usesurrogate = 1 ou 2 de rpart)
 si aucune variable équidivisante, application de la règle majoritaire (usesurrogate = 2, 

valeur par défaut) ou on reste au niveau père (usesurrogate = 1)

� on a toujours une prédiction ≠ NA car même si tous les prédicteurs 
impliqués dans des scissions sont manquants pour un individu, il est 
affecté à la racine avec les probabilités a priori
� sauf si na.action = na.omit ou na.action = na.fail
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Importance d’une variable

� Une variable X1 peut ne jamais apparaître dans l’arbre, tout en étant 
très corrélée à une variable X2 qui apparaît souvent et la masque
�  il ne faut pas évaluer l’importance de X1 en ne considérant que les nœuds 

de l’arbre où X1 a été retenue pour la scission

� Importance d’une variable dans un nœud :
� = baisse d’impureté de la scission produite par la variable si elle a été retenue 

pour la scission du nœud

� = (baisse d’impureté x concordance avec la variable retenue), si la variable est 
équidivisante pour ce nœud (de concordance > 0)

� = 0 sinon

� Importance d’une variable dans un arbre :
� somme de l’importance de la variable dans l’ensemble des nœuds

� normalisée pour que la somme des importances des variables = 100

� rpart met l’importance d’une variable à 0 si elle est < 0,01
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Élagage et sur-apprentissage

� Il est préférable d’élaguer un arbre pour éviter la remontée du
taux d’erreur due au sur-apprentissage

Relative Cost vs Number of Nodes
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Élagage dans CART

� Il faut trouver le bon compromis entre l’ajustement de l’arbre
en apprentissage (biais) et sa capacité de généralisation
(variance)

� Le Lasso traite ce problème par l’ajout d’une pénalisation dont
l’augmentation progressive annule un à un les coefficients de la
régression

� La stratégie inventée par les inventeurs de CART consiste à
commencer par construire un arbre maximal avant de l’élaguer
en coupant les branches jugées les moins généralisables

� Ce n’est pas l’indice de Gini ni l’entropie qui sont utilisés pour
contrôler l’élagage, mais le taux d’erreur
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Coût-complexité d’un arbre
� Complexité (ou taille) de l’arbre : nombre de feuilles (≠ racine)
� Coût-complexité CCP(arbre) = CR(arbre) + CP.(# feuilles)
� CR : coût de l’arbre calculé par resubstitution (sur les données 

d’apprentissage)
� ce coût est généralement un taux d’erreur dans un arbre de classement, 

et une erreur quadratique en régression (mais il peut intégrer des coûts 
de mauvaise affectation)

� Minimum de CR atteint pour l’arbre maximal Tmax : attention au sur-
apprentissage !

� Solution : augmenter progressivement le paramètre de complexité CP
et chercher un sous-arbre TCP ⊂ Tmax minimisant le coût-complexité 
CCP

� Pour CP = 0, le sous-arbre minimisant le coût-complexité est l’arbre 
maximal, mais lorsque CP augmente, le nombre de feuilles représente 
un coût et la somme « CR(arbre) + CP.(# feuilles) » est minimisée 
pour un nombre plus petit de feuilles
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Premier résultat sur l’élagage
� Quand CP augmente, le sous-arbre TCP minimisant CCP est de plus en 

plus petit  on a une séquence descendante des tailles des arbres
� à la complexité CP = 0 correspond l’arbre maximal
� au-delà d’un certain seuil de CP, il faut que le nombre de feuilles soit nul, car le 

coût par resubstitution de l’arbre réduit à la racine est inférieur à celui de 
n’importe quel arbre augmenté de CP

� 1er résultat : si deux sous-arbres minimisent le coût-complexité pour 
une valeur CP, alors ils sont égaux ou l’un contient l’autre  il existe 
un arbre TCP de taille minimale qui minimise le coût-complexité CCP

� Quand CP parcourt l’ensemble infini des valeurs réelles ≥ 0, 
l’ensemble des arbres TCP est fini, et un arbre TCP minimise aussi CCP’ 

pour une valeur CP’ > CP jusqu’à ce que CP’ atteigne une valeur à 
laquelle corresponde un arbre TCP’ strictement plus petit que TCP

� On obtient ainsi une séquence croissante des CP, à laquelle 
correspond une séquence décroissante des TCP
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Second résultat sur l’élagage
� 2e résultat : ces arbres sont inclus les uns dans les autres, ce qui 

signifie que chacun est obtenu par élagage du précédent
� De plus, il existe une procédure simple et rapide pour 

déterminer la branche de TCP à élaguer à chaque étape : il faut 
trouver la plus petite valeur CP’ > CP pour laquelle TCP a un 
nœud {t} tel que CCP’({t}) = CCP’(branche de TCP ayant {t} pour 
racine)
� cette valeur existe puisqu’une pénalisation suffisamment grande finira 

par donner à la branche issue d’un nœud {t} un coût-complexité plus 
grand qu’au nœud lui-même

� On peut donc élaguer cette branche puisque l’arbre élagué en 
{t} conduit au même coût-complexité pour CP’

� Ce processus est effectif et assez rapide à mettre en œuvre
� bien plus que s’il fallait effectuer une recherche exhaustive des sous-

arbres de Tmax
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Synthèse
� Par élagage successif, nous avons obtenu une séquence de sous-

arbres emboîtés
Tmax ⊃ T1 ⊃ T2 ⊃ … ⊃ Tm = {racine}

� de complexités croissantes
0 = CP0 < CP1 < CP2 < … CPm

� et dans laquelle chaque Ti est le sous-arbre dont le coût par 
resubstitution est le plus bas de tous les sous-arbres de Tmax de 
même taille

� Cette séquence de sous-arbres étant obtenue, il reste bien sûr à 
déterminer le niveau optimal de complexité pour l’ajustement 
et la généralisation du modèle

� En pratique (voir le package rpart), on peut limiter la 
séquence explorée en fixant une valeur minimale CP0 > 0 (c’est 
le paramètre cp)
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Mise en œuvre avec R
� Package le plus utilisé : rpart (Recursive PARTitioning)

� à la base de ipred pour le bagging et ada pour le boosting
� ne gère pas d’échantillon de test (contrairement à randomForest)
� autre package (moins rapide) : tree

� Pour le classement (method = class) et la régression (method
= anova)

� Avec l’indice de Gini (split = gini) et l’entropie (split = 
information)

� Permet de spécifier des coûts, l’utilisation de variables équidivisantes, 
la pénalisation minimale de la complexité dans le processus d’élagage 
(cp) ou la profondeur maximale (maxdepth), l’effectif minimum 
d’un nœud pour être scindé (minsplit) et l’effectif minimum d’une 
feuille (minbucket, valeur par défaut = minsplit/3)

� Arbre de profondeur maximale :
> cart <- rpart(y ~ ., data = train, method="class", 
parms=list(split="gini"), cp=0)
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31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 222

Mise en œuvre avec R (suite)
� Arbre avec contraintes sur l’élagage :

> cart <- rpart(y ~ . , data = train, method="class", 
parms=list(split="gini"), control=list(minbucket=30, 
minsplit=30*2, maxdepth=4))

� « Stump » (arbre à deux feuilles) :
> cart <- rpart(y ~ . , data = train, method="class", 
parms=list(split="gini"), control=list(maxdepth=1,cp=-
1,minsplit=0))

� Évolution de l’élagage en fonction de la pénalisation
> printcp(cart)

� Affichage des informations précédentes + variables concurrentes et 
suppléantes, et importance des variables
> summary(cart, digits=3)

� Élagage à un niveau de pénalisation fixé :
> prunedcart4f <- prune(cart, cp=0.0328152)
� à noter : pas d’application automatique dans rpart de la règle 1 SE ou 0 SE
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Détail de l’arbre
> cart # commande équivalente à "print(cart)"

n= 666 

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 666 200 0 (0.69969970 0.30030030)  

2) Comptes=CC > 200 euros,Pas de compte 300  35 0 (0.88333333 0.11666667)  

4) Montant_credit< 9504 291  30 0 (0.89690722 0.10309278)  

8) Objet_credit=Autres,Electroménager,Formation,Mobilier,Vidéo HIFI,Voiture
neuve,Voiture occasion 247  18 0 (0.92712551 0.07287449) *

9) Objet_credit=Business,Etudes,Travaux 44  12 0 (0.72727273 0.27272727)  

18) Autres_credits=Aucun crédit 33   5 0 (0.84848485 0.15151515) *

…

� Pour chaque nœud, nous avons :
� son numéro node, par exemple « 2 »
� sa règle de scission split, par exemple « Comptes=CC > 200 euros,Pas de compte »
� le nombre n d’individus dans ce nœud, par exemple « 300 »
� le nombre loss d’individus mal classés (∉ classe majoritaire), ici « 35 »
� la valeur prédite yval, qui est la classe majoritaire, ici « 0 »
� la probabilité d’appartenance à chaque classe, ici (0,88333333 et 0,11666667)
� le cas échéant, l’indication par un * à la fin de la ligne que le nœud est terminal
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Variables concurrentes et suppléantes
� Affichage de la fonction summary (primary splits : variables concurrentes, surrogate splits : suppléantes)
Node number 1: 666 observations,    complexity param=0.07

predicted class=0  expected loss=0.3  P(node) =1

class counts:   466   200

probabilities: 0.700 0.300 

left son=2 (300 obs) right son=3 (366 obs)

Primary splits:

Comptes splits as  RRLL,      improve=36.8, (0 missing)

Epargne splits as  RLLRL,     improve=14.0, (0 missing)

Historique_credit splits as  LLRRL,     improve=14.0, (0 missing)

Montant_credit < 8020  to the left,  improve=12.5, (0 missing)

Duree_credit < 34.5  to the left,  improve=11.3, (0 missing)

Surrogate splits:

Epargne splits as  RLLRL,      agree=0.629, adj=0.177, (0 split)

Objet_credit splits as  RRRRRRLLRL, agree=0.581, adj=0.070, (0 split)

Historique_credit splits as  RLRRR,      agree=0.578, adj=0.063, (0 split)

Age                 < 40.5  to the right,  agree=0.575, adj=0.057, (0 split)

Anciennete_domicile splits as  RRLR,       agree=0.572, adj=0.050, (0 split)

Node number 2: 300 observations,    complexity param=0.00667

predicted class=0  expected loss=0.117  P(node) =0.45

class counts:   265    35

probabilities: 0.883 0.117 

……………
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Affichage d’un arbre dans R avec 
rpart.plot

� Affichage amélioré par rapport à la fonction plot de rpart :
> library(rpart.plot)

> cols <- ifelse(prunedcart4f$frame$yval == 1,"green3","red")

> prp(prunedcart4f, type=2, extra=101, 
split.box.col="lightgray", nn=TRUE, col=cols, border.col=cols)

Comptes = 3,4

Duree_cr < 22

Objet_cr = A41,A410

0
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16  6
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1
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yes no
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Affichage d’un arbre dans R avec partykit

� Affichage amélioré par rapport à la fonction plot de rpart :
> library(partykit)

> plot(as.party(prunedcart4f))

Comptes

1
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Affichage d’un arbre dans R avec rattle

� Affichage amélioré par rapport à la fonction plot de rpart :
> library(rattle)

> fancyRpartPlot(prunedcart4f, sub=" ")

Comptes = CC > 200 euros,Pas de compte

Duree_credit < 22

Objet_credit = Autres,Voiture occasion

yes no

1

2

3

6

7

14 15

Comptes = CC > 200 euros,Pas de compte

Duree_credit < 22

Objet_credit = Autres,Voiture occasion

0
.70  .30
100%

0
.87  .13

47%

0
.55  .45

53%

0
.65  .35

30%

1
.42  .58
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0
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1
.37  .63
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14 15
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31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 228

Évolution du paramètre de complexité
� Avec cp = 0, la fonction printcp de rpart affiche :

CP nsplit rel error xerror xstd

1  0.0700000      0     1.000  1.000 0.059148

2  0.0650000      3     0.790  1.000 0.059148

3  0.0350000      4     0.725  0.810 0.055361

4  0.0183333      5     0.690  0.770 0.054404

5  0.0150000      8     0.635  0.840 0.056041

6  0.0133333     10     0.605  0.825 0.055705

7  0.0100000     14     0.550  0.805 0.055245

8  0.0075000     15     0.540  0.880 0.056897

9  0.0066667     17     0.525  0.880 0.056897

10 0.0033333     20     0.505  0.915 0.057601

11 0.0000000     23     0.495  0.960 0.058448
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Explication du tableau
� Ce tableau affiche, en fonction de CP :

� rel error : erreur calculée par resubstitution

� xerror : erreur calculée par 10-validation croisée

� xstd : écart-type de l’erreur par validation croisée = 
K4kk�k× �0K4kk�k

(F!HH4 éDmF%(!HH�%
� nsplit : nombre de scissions (= nombre de feuilles – 1)

� Les taux d’erreur affichés sont relatifs : ils ont été mis à l’échelle afin de valoir 1 pour l’arbre réduit à la racine

� Or l’arbre réduit à la racine n’a pas un taux d’erreur égal à 1 mais à ε (en affectant tous les individus à la 
classe majoritaire)  chaque ligne du tableau doit être multipliée par ε pour obtenir l’erreur absolue

CP nsplit rel error xerror xstd

1  0.0700000      0     1.000  1.000 0.059148

…

11 0.0000000     23     0.495  0.960 0.058448

� Ici ε = 200/666 et l’erreur par resubstitution de l’arbre maximal = ε x 0,495 = 0,1486486

� On peut vérifier ce calcul :
> sum(predict(cart,type="class") != train$Cible)/nrow(train)

[1] 0.1486486

� Et calculer l’écart-type relatif de l'erreur par validation croisée :
> x <- 0.960*200/666 # xerror absolue

> sqrt((x*(1-x))/666)/(200/666)

[1] 0.05844841
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Lecture du tableau
� Reprenons le tableau

CP nsplit rel error xerror xstd
1 0.0700000      0     1.000  1.000 0.059148
2  0.0650000      3     0.790  1.000 0.059148
…
10 0.0033333     20     0.505  0.915 0.057601
11 0.0000000     23     0.495  0.960 0.058448

� On a CCP = (0,0033333 x 20) + 0,505 = (0,0033333 x 23) + 0,495 
l’arbre élagué correspondant à CP = 0,0033333 est l’arbre à 21 
feuilles (20 scissions), puisque son coût par resubstitution, un peu plus 
élevé que celui de l’arbre maximal à 24 feuilles, est compensé par une 
pénalisation moins grande (et qu’on retient le plus petit des arbres 
minimisant le coût-complexité CCP)

� On a (0,07 x 3) + 0,79 = 1 = (0,07 x 0) + 1 (coût-complexité de 
l’arbre réduit à la racine)  l’arbre élagué correspondant à CP = 0,07 
est la racine
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31/01/2020 © Stéphane Tufféry – Usage réservé à l’Université Rennes 1 – Master 1 IEF 231

Règles d’élagage

� « 0 SE » : élaguer l’arbre au minimum du taux d'erreur (plus 
généralement, du coût) calculé par validation croisée ou sur un 
échantillon de test

� « 1 SE » :  élaguer l’arbre au niveau du plus petit arbre (c'est-à-
dire la plus grande valeur de CP) dont l’erreur soit inférieure à 
l’erreur minimale plus un écart-type

� La règle « 1 SE » conduit à retenir un arbre moins complexe 
que la règle « 0 SE », et elle est cohérente avec le fait qu’il faut 
tenir compte de la variabilité de l’erreur calculée par validation 
croisée

� Dans les tests sur données simulées effectués par Breiman et al., 
la règle « 1 SE » conduit à une plus grande stabilité dans la taille 
des arbres élagués
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Graphique
� La fonction plotcp produit un graphique représentant 

l’évolution de l’erreur par validation croisée et du nombre de 
feuilles, en fonction de la pénalisation

L’erreur 
minimale plus 
un écart-type 
est 
représentée 
par une ligne 
horizontale en 
pointillés

Application de « 0 
SE »
Application de « 1 
SE »

Erreur minimale + 
1 écart-type =
> 0.770 + 
0.054404
[1] 0.824404
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Élagage automatique
� Application de la règle « 1 SE » :

> xerr <- cart$cptable[,"xerror"]

> minxerr <- which.min(xerr)

> seuilerr <- cart$cptable[minxerr, "xerror"] + 
cart$cptable[minxerr, "xstd"]

> xerr [xerr < seuilerr][1]

3 

0.81 

> mincp <- cart$cptable[names(xerr [xerr < seuilerr][1]), 
"CP"]

> mincp

[1] 0.035

> prunedcart <- prune(cart,cp=mincp)

� Application de la règle « 0 SE » :
prunedcart <- prune(cart, 
cp=cart$cptable[which.min(cart$cptable[,"xerror"]),"CP"])
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Prédiction d’un arbre
� Application de l’arbre élagué à l’échantillon de validation :

> prunedcart5f <- prune(cart, cp=0.035)
> pred.cart <- predict(prunedcart5f, type="prob", valid)

� Création d’une matrice avec une colonne par modalité de la variable à 
expliquer, chaque colonne contenant la probabilité associée

� Exemple des cinq premières valeurs dans l’échantillon de test :
> head(pred.cart,5)

0         1
1 0.7119565 0.2880435
2 0.3047619 0.6952381
3 0.8833333 0.1166667
4 0.3047619 0.6952381
6 0.8833333 0.1166667

� Aire sous la courbe ROC :
> library(pROC)
> auc(valid$Cible, pred.cart[,2], quiet=TRUE)
Area under the curve: 0.6894
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Aire sous la courbe ROC d’un arbre
� Élagage de l’arbre maximal à 5 et 6 feuilles, application à 

l’échantillon de validation et superposition des aires 
sous la courbe ROC
> prunedcart5f  <- prune(cart, cp=0.035)

> pred.cart <- predict(prunedcart5f, 
type="prob", valid)

> prunedcart6f <- prune(cart, cp=0.0183333)

> pred.cart6f  <- predict(prunedcart6f, 
type="prob", valid)

> roc <- plot.roc(valid$Cible, pred.cart[,2], 
col='black', lty=1, ci=TRUE, quiet=TRUE)

> plot.roc(valid$Cible, pred.cart6f[,2], 
add=TRUE, col='red', lty=2, ci=TRUE, quiet=TRUE)

> roc.se <- ci.se(roc, 
specificities=seq(0,1,.01), boot.n=2000)

> plot(roc.se, type="shape", col="#0000ff22")

> legend("bottomright",c('6 feuilles','5 
feuilles'),col=c('red','black'),lty=c(2,1),lwd=3)

� La courbe ROC de l’arbre à 6 feuilles est à l’intérieur 
de l’intervalle de confiance à 95 % de celle de l’arbre à 
5 feuilles

� On constate généralement que les courbes ROC des 
meilleurs modèles ajustés sur un même échantillon sont 
à l’intérieur d’un intervalle de confiance à 95 %
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Calcul des erreurs et des aires sous la 
courbe ROC
� Ajout de l’aire sous la courbe ROC à la table des erreurs en fonction du paramètre de 

complexité :
> set.seed(235)

> auc <- matrix(NA,nrow(cart$cptable)-1,4)

> for(i in 2:nrow(cart$cptable))

+ {

+ cartp <- prune(cart, cp=cart$cptable[i,"CP"])

+ predc <- predict(cartp, type="prob", valid)[,2]

+ auc[i-1,1] <- cart$cptable[i,"CP"]

+ auc[i-1,2] <- cart$cptable[i,"nsplit"]+1

+ auc[i-1,3] <- cart$cptable[i,"xerror"]

+ auc[i-1,4] <- auc(valid$Cible, predc, quiet=TRUE)

+ }

> colnames(auc) <- c("CP","nfeuilles","erreur","AUC")

> auc

CP nfeuilles erreur       AUC

[1,] 0.065000000         4  1.000 0.6863462

[2,] 0.035000000         5  0.810 0.6894231

[3,] 0.018333333         6  0.770 0.6869658

[4,] 0.015000000         9  0.840 0.6955128

[5,] 0.013333333        11  0.825 0.6846581

[6,] 0.010000000        15  0.805 0.6927350

[7,] 0.007500000        16  0.880 0.6864744

[8,] 0.006666667        18  0.880 0.6925427

[9,] 0.003333333        21  0.915 0.6822863

[10,] 0.000000000        24  0.960 0.6820299
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Arbre C5.0
� C5.0 est adapté comme CART à tout type de variables

� C5.0 est plus rapide et gère mieux la mémoire que C4.5 aussi inventé
par J.R. Quinlan

� Dispositif d’optimisation de l’arbre par construction puis
élagage d’un arbre maximum
� le procédé d’élagage est différent de celui de CART et il est lié à 

l’intervalle de confiance du taux d’erreur donc à l’effectif du nœud
� Utilisation de l’entropie comme fonction d’impureté
� C5.0 n’est pas binaire. Les variables qualitatives, au niveau d’un

nœud père, donnent naissance à un nœud fils par modalité
� inconvénient : les nœuds voient plus rapidement leurs effectifs baisser

� Transformation de l’arbre en règles qui permet une
simplification par suppression de règles redondantes mais fait
perdre la structure d’arbre

� R : packages C50 et RWeka
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Prédiction d’une variable ordinale I

� Les coûts de mauvais classement permettent de prédire une 
variable ordinale

� Soient s1 < s2 < … < sJ les valeurs ordonnées de Y
� Un coût de mauvais classement peut être Cij = |si – sj|
� Une erreur de classement dans une classe adjacente a moins de 

poids que dans une classe distante

� L’indice de Gini devient alors ∑ ∑ |h! − h:|T!T:
o
:&�

o
!&�

� = 2 ∑ h:�� − h: p:(1 − p:)o0�
:&� avec p: =  ∑ Tm

:
m&� (proportion 

cumulée) d’après Piccarreta (2001)

� = 2 ∑ p:(1 − p:)o0�
:&� dans le cas (fréquent) où h:�� − h: = 1 

pour tout j ≥ 1

� ∑ p:(1 − p:)o0�
:&� est l’indice de Gini ordinal de Piccarreta (2008)
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Prédiction d’une variable ordinale II

� Pour l’élagage d’un arbre avec Y ordinale, le taux d’erreur 
�
% ∑ 1q/jq̂(K/)%!&� peut être remplacé par un coût total de mauvais 

classement ∑ h! − ĥ( !)%!&� faisant intervenir la distance entre 
la valeur ordinale observée h! et prédite ĥ( !)

� Ce coût peut être utilisé dans le calcul du coût-complexité 
utilisé pour l’élagage de l’arbre

� Avec un coût de mauvais classement Cij = (si – sj)², on peut 
montrer que l’indice de Gini est proportionnel à la variance des 
valeurs s1, s2, … , sJ, et que l’objectif de réduction de l’indice de 
Gini équivaut à la réduction de la variance des sj dans les 
nœuds-fils, donc au développement d’un arbre de régression 
dont les valeurs numériques sont les valeurs sj
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Prédiction d’une variable ordinale III

� Le package R rpartScore met en œuvre les arbres de 
décision ordinaux sur la base de CART avec :
� les coûts Cij = |si – sj| (split="abs") et Cij = (si – sj)² 

(split="quad")

� le coût total de mauvais classement ∑ h! − ĥ( !)%!&� (prune="mc")

� La fonction rpartScore renvoie un objet de la classe rpart

� NB : le package rpart n’implémente pas les coûts de mauvaise 
classification car il suppose que le coût Cij d’affectation à Gi d’un 
individu qui est dans Gj ne dépend que de Gj et quand on lui 
spécifie une matrice de coûts comme paramètre loss, il 
remplace Cij par ΣiCij
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Avantages des arbres de décision 1/2

� Ils fournissent des règles :
� explicites

� visuelles

� qui s’écrivent directement avec les variables d’origine

� Méthode non paramétrique, non perturbée par :
� la distribution non linéaire ou non monotone des prédicteurs

par rapport à la variable à expliquer

� la colinéarité des prédicteurs

� les interactions entre les prédicteurs

� les individus hors norme (isolés dans des règles spécifiques)

� les fluctuations des prédicteurs non discriminants (l’arbre
sélectionne les plus discriminants)
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Avantages des arbres de décision 2/2

� Beaucoup traitent (sans recodification) des données
hétérogènes (numériques et non numériques, voire
manquantes)
� CART traite les valeurs manquantes en remplaçant les variables

concernées par des variables équidivisantes

� CHAID traite l’ensemble des valeurs manquantes d’une variable comme
une modalité à part ou pouvant être associée à une autre

� éviter d’avoir trop de valeurs manquantes

� Temps de calcul assez rapide
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Limites des arbres de décision 1/2

� Les nœuds du niveau n+1 dépendent fortement de ceux du
niveau n
� les variables sont testées séquentiellement et non simultanément
 la modification d’une seule variable, si elle est placée près du sommet de

l’arbre, peut entièrement modifier l’arbre
� un arbre détecte des optimums locaux et non globaux
� un arbre est sensible au franchissement d’un seuil de scission
manque de robustesse

� L’apprentissage nécessite un nombre suffisant d’individus
� pour avoir si possible au moins une trentaine individus par nœud

� Même avec des variables explicatives continues, la prédiction est
distribuée de façon discontinue puisqu’elle dépend des feuilles
� nombre de valeurs prédites distinctes ≤ nombre de feuilles
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Limites des arbres de décision 2/2

� La forme des modèles obtenus, (X ≤
n) et (X ∈ {a,b,c…}), conduit à 
délimiter des régions rectangulaires 
de l’espace des variables qui ne 
correspondent pas forcément à la 
distribution des individus

� Les arbres obliques remédient à cet 
inconvénient en substituant aux règles 
simples de division des nœuds, de la 
forme (X ≤ n), des règles sur plusieurs 
variables du type (aX + bY+ … ≤ n) 
et permettent un classement au moins 
aussi précis que si l’arbre avait 
beaucoup plus de nœuds
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La classification automatique
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Terminologie : de nombreux synonymes

� Classification, ou classification automatique, terme 
généralement employé par les auteurs français
� attention : il est employé dans un autre sens par les anglo-saxons (qui 

disent « classification » pour désigner la technique prédictive que les 
français appellent « classement »)

� Segmentation : terme employé en marketing (les « segments 
de clientèle ») et assez explicite

� Typologie, ou analyse typologique

� Clustering : terme anglo-saxon le plus courant
� Taxinomie ou taxonomie (biologie, zoologie)
� Nosologie (médecine)
� Reconnaissance de forme non supervisée (réseaux de 

neurones)
� ...
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Structure des données à classer

� Soit une matrice rectangulaire dont :
� lignes = individus

� colonnes = variables

� Cette structure permet de classer individus ou variables

� Soit une matrice carrée de similarités, distances entre :
� individus

� ou variables (par exemple : la matrice des corrélations)

� Cette structure permet aussi de classer individus ou 
variables
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Structure des classes obtenues

� Soit 2 classes sont toujours disjointes : méthodes de
partitionnement :
� généralement, le nombre de classes est défini a priori

� certaines méthodes permettent de s’affranchir de cette contrainte
(méthodes basées sur la densité comme DBSCAN ou OPTICS)

� Soit 2 classes sont disjointes ou l’une contient l’autre :
méthodes hiérarchiques :
� ascendantes (agglomératives : agglomération progressive d’éléments 2 à 2)

� descendantes (divisives)

� Soit 2 classes peuvent avoir plusieurs objets en commun (classes
« empiétantes » ou « recouvrantes ») :
� analyse « floue », où chaque objet a une certaine probabilité

d’appartenir à une classe donnée
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Les différentes méthodes de classification
� Méthodes de partitionnement

� centres mobiles, k-means et nuées dynamiques
� k-modes, k-prototypes, k-représentants (k-medoids)
� réseaux de Kohonen
� méthodes basées sur la densité
� méthode d’agrégation des similarités

� Méthodes hiérarchiques
� ascendantes (agglomératives)

� basées sur une notion de distance ou de densité

� descendantes (divisives)

� Méthodes mixtes
� Analyse floue (fuzzy clustering)
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Applications de la classification
� Marketing : répartir la clientèle en segments dotés chacun d’une

offre et d’une communication spécifique – autres utilisations pour :
� les ciblages des actions commerciales
� l’évaluation du potentiel commercial
� l’affectation des clients aux différents types de commerciaux

� Commercial : répartir l’ensemble des magasins d’une enseigne en
établissements homogènes du point de vue type de clientèle, CA,
CA par rayon (selon type d’article), taille du magasin…

� Médical : déterminer des groupes de patients susceptibles d’être
soumis à des protocoles thérapeutiques déterminés, chaque groupe
regroupant tous les patients réagissant identiquement

� Sociologie : répartir la population en groupes homogènes du point
de vue sociodémographique, style de vie, opinions, attentes…

� …
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Exemple de segmentation de clientèle 
(bancaire)

forts revenusfaibles revenus

patrimoine - âge

crédit conso - CB

S1 (rouge) : peu actifs
S2 (rose) : jeunes
S3 (bleu) : consommateurs

S4 (orange) : seniors
S5 (noir) : aisés
S6 (vert) : débiteurs
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Interprétation des classes

� Statistiques descriptives des classes (comparaison des moyennes 
ou des modalités par un test statistique)

� Analyse factorielle représentant les classes obtenues et les 
variables initiales

� Classification des variables : variables initiales + indicatrices des 
classes obtenues

� Arbre de décision avec la classe obtenue comme variable à 
expliquer
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